1.Effects of nicotinamide mononucleotide on hypertensive rats
Yuchen WEI ; Jiasheng TIAN ; Daoxin WANG ; Qisheng LING ; Zhi WANG ; Chaoyu MIAO
Journal of Pharmaceutical Practice and Service 2025;43(5):213-221
Objective To explore the effects of nicotinamide mononucleotide (NMN) on hypertensive rats. Methods Two rat hypertension models including spontaneously hypertensive rats(SHR)and two-kidney two-clip (2K2C) rats were used to be given single, long-term or lifelong administration of NMN respectively. NMN’s effects were assessed comprehensively by monitoring survival time, blood pressure levels, and the extent of organ damage in hypertensive model rats. Results It was revealed that NMN did not exhibit protective effects in terms of lowering blood pressure levels, reducing organ damage or increasing survival time in hypertensive rats. Conclusion This study suggested that NMN did not demonstrate anti-hypertensive effects in rat hypertension models and could provide valuable insights for future clinical observation on NMN.
2.Visualization analysis of artificial intelligence in bone trauma research based on Citespace
Haoran SONG ; Yuqiang ZHANG ; Na GU ; Xiaodong ZHI ; Wei WANG
Chinese Journal of Tissue Engineering Research 2025;29(3):493-502
BACKGROUND:The development of artificial intelligence in the medical field is rapidly advancing,with increasing research on its applications in the field of bone trauma.Through bibliometric analysis,this paper analyzed the research hotspots of artificial intelligence in the field of bone trauma in recent years,and predicted the future research trend. OBJECTIVE:To summarize the development history,research status,hot spots,and future development trends of artificial intelligence technology in the field of bone trauma to provide new insights for future research. METHODS:This study selected relevant literature from the Web of Science core database,covering the period from the inception to August 2023,and retrieved 420 articles related to the application of artificial intelligence,machine learning,and deep learning in the field of bone trauma.After manual screening,202 articles related to this article were exported,and Citespace software was used for visual analysis of cooperation of countries,institutions,cited journals,citation analysis,keyword co-occurrence,and other aspects. RESULTS AND CONCLUSION:(1)The overall number of publications from the 202 selected articles showed an upward trend,indicating significant research potential for future studies.The country with the highest centrality and the highest publication volume was the United States.The University of California(USA)was the most prolific research institution.(2)The top five most commonly used keywords in bone trauma research using artificial intelligence were deep learning,artificial intelligence,bone density,machine learning,and diagnosis.The keyword with the highest centrality was bone density,and the keyword with the highest frequency was deep learning.(3)The top 10 most cited reference papers provided comprehensive insights into the feasibility of applying artificial intelligence techniques to the diagnosis of bone trauma from various perspectives.Among them,eight papers focused on bone and joint injuries and deep convolutional neural networks.One paper discussed the use of deep learning in detecting osteoporosis in CT scans to prevent fragility fractures,while another paper explored the correlation between the application of artificial intelligence in identifying changes in skin texture and the recognition of bone characteristics.(4)In the future,the research hotspots of artificial intelligence will mainly focus on the specific study of fractures caused by bone and joint trauma and osteoporosis.The research trend mainly focuses on improving the performance of artificial intelligence algorithms,using new artificial intelligence technologies to accurately classify and quickly and efficiently diagnose bone injuries,especially for the diagnosis of complex and hidden fractures.By establishing finite element analysis models,more standardized evaluations of bone injuries can be achieved.
3.Four new sesquiterpenoids from the roots of Atractylodes macrocephala
Gang-gang ZHOU ; Jia-jia LIU ; Ji-qiong WANG ; Hui LIU ; Zhi-Hua LIAO ; Guo-wei WANG ; Min CHEN ; Fan-cheng MENG
Acta Pharmaceutica Sinica 2025;60(1):179-184
The chemical constituents in dried roots of
4.A new glycoside from Alstonia mairei Lévl.
Li-ke WANG ; Bing-yan LI ; Zhen-zhu ZHAO ; Yan-zhi WANG ; Xiao-kun LI ; Wei-sheng FENG ; Ying-ying SI
Acta Pharmaceutica Sinica 2025;60(1):191-195
Nine compounds were isolated and purified from 90% ethanol extract of
5.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
6.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
7.Junctophilin-2 MORN-Helix Domain: Structural Basis for Membrane Binding and Hypertrophic Cardiomyopathy-associated Mutations
Jing-Xin WANG ; Zhi-Wei LI ; Wei LIU ; Wen-Qing ZHANG ; Jian-Chao LI
Progress in Biochemistry and Biophysics 2025;52(8):2103-2116
ObjectiveJunctophilin-2 (JPH2) is an essential structural protein that maintains junctional membrane complexes (JMCs) in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum, thereby facilitating excitation-contraction (E-C) coupling. Mutations in JPH2 have been associated with hypertrophic cardiomyopathy (HCM), but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus (MORN) repeat motifs remain incompletely understood. This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis. MethodsA recombinant N-terminal fragment of mouse JPH2 (residues1-440), encompassing the MORN repeats and an adjacent helical region, was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain. Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features. Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells. In addition, site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations, including R347C, was used to evaluate their effects on membrane interaction and subcellular localization. ResultsThe crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6 Å, revealing a compact, elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration, forming a continuous hydrophobic core stabilized by alternating aromatic residues. A C-terminal α-helix further reinforced structural integrity. Conservation analysis identified the inner groove of the MORN array as a highly conserved surface, suggesting its role as a protein-binding interface. A flexible linker segment enriched in positively charged residues, located adjacent to the MORN motifs, was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes. Functional assays demonstrated that mutation of these basic residues impaired membrane association, while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays, despite preserving the overall MORN-Helix fold in structural modeling. ConclusionThis study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2, highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions. The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis. These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts.
8.Interaction between neuron-glial cell gap junction and neural circuit
Hong-Bin WANG ; Jiao YAO ; Hui-Qin WANG ; Zhi-Feng TIAN ; Qi-Di AI ; Mei-Yu LIN ; Yan-Tao YANG ; Song-Wei YANG ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(7):1210-1214
Gap junction(GJ),also known as gap junction,is widely found between neurons and glial cells,and can connect neighboring cells and mediate the transmission of electrical sig-nals between neighboring cells.The GJ channel,which exists between neurons and mediates intercellular electrical signaling,is also known as an electrical synapse.Connexins(Cxs)are the molecular basis of GJ,and are expressed to different degrees in different neurons and glial cells.The presence of GJ mediates different functions among neurons and glial cells,which further influences the establishment of various mature neural circuits,re-flecting the importance of GJ in the maintenance of neural cir-cuits.This review summarizes the relationship between GJ and neural circuits in relation to the effects of GJ and different Cxs on neurons and glial cells,providing new research ideas for the treatment of neuropsychiatric disorders.
9.Effects of hypobaric hypoxia intervention on behavioral and hematological indicators in PTSD rats
Bao-Ying SHEN ; Zhi-Xing WANG ; Bo-Wei LI ; Chun-Qi YANG ; Xin SHEN ; Cheng-Cai LAI ; Yue GAO
Chinese Pharmacological Bulletin 2024;40(7):1231-1239
Aim To preliminarily evaluate the effects of hypobaric hypoxia on organism damage in rats with post-traumatic stress disorder(PTSD),with a view to laying a foundation for drug research in plateau PTSD.Methods The rats were randomly divided into four groups,namely,the control(Control)group,the sin-gle-prolonged stress(SPS)group,the hypobaric hy-poxia(HH)group and the single-prolonged stress combined with hypobaric hypoxia(SPS+HH)group.The PTSD model was firstly constructed using the SPS method for rats in the SPS and SPS+HH groups.On the second day,rats in the HH group and SPS+HH group were placed in a low-pressure hypoxia chamber at a simulated altitude of 6000 m for 14 days.General condition,behavior,blood tests,and histomorphology were examined in order to evaluate the damage caused by low pressure hypoxia in PTSD rats.Results The body mass of rats in the SPS+HH group was signifi-cantly reduced;the feces were partly hard and lumpy,and some of them were seen to have high viscosity.Anxiety-like and depression-like behaviors were ob-served in all groups except in the control group,in which hypobaric hypoxia aggravated the behavioral ab-normalities in SPS rats.Rats in both the SPS and SPS+HH groups had coagulation dysfunction and abnor-mally increased blood viscosity,which was significantly abnormal in the SPS+HH group;erythrocytes,hemo-globin,and erythrocyte specific volume in whole blood of rats in the SPS+HH group were significantly in-creased compared with those of rats in the SPS group;and serum TP,LDH and GLU levels were abnormal in rats in the SPS+HH group.Dilated and congested blood vessels were seen in hippocampal tissue,conges-ted central veins were seen in hepatic tissue,and dilat-ed and congested liver sinusoids with mild granuloma-tous degeneration of hepatocytes were seen in rats of the SPS+HH group.Conclusion Hypobaric hypoxia exacerbates depression-like and anxiety-like behaviors in PTSD rats,as well as hematological indices and his-tomorphometric abnormalities in PTSD rats.
10.Proanthocyanin B2 inhibits oxidative stress and alleviates H2O2 induced damage to human oligodendrocytes through NRF2/HO-1/xCT/GPX4 axis
Jian LIU ; Ying CHEN ; Ya-Jie LIANG ; Meng PU ; Zi-Wei ZHANG ; Lu-Lu ZHENG ; Zhi CHAI ; Ying XIAO ; Cun-Gen MA ; Qing WANG
Chinese Pharmacological Bulletin 2024;40(9):1735-1743
Aim To explore the protective effect of an-thocyanin B2(PCB2)on hydrogen peroxide(H2O2)induced oxidative damage and apoptosis in human oli-godendrocytes(MO3.13)and the underlying mecha-nism.Methods The optimal concentration of H2O2 and PCB2 for action was screened,and divided into normal group,PCB2 group(100 mg·L-1 PCB2 treat-ment for 24 hours),H2 O2 model group(500 μmol·L-1 H2O2 treatment for 24 hours),and H2O2+PCB2 group(500 μmol·L-1 H2O2 and 100 mg·L-1 PCB2 co-treated for 24 hours).FRAP method was used to detect the antioxidant capacity of PCB2;CCK-8 meth-od was used to detect the survival rate of cells in each group,while LDH method was used to assess cytotoxic-ity.Microenzyme-linked immunosorbent assay and ELISA were used to examine the levels of LDH,NO,H2O2,as well as the activities of CAT and SOD in each group of cells.Immunofluorescence and Western blot were used to detect the protein expression levels of NRF2,xCT,HO-1,ferritin,and GPX4 in each group of cells.FerroOrange fluorescent probe was used to de-tect the intracellular content of ferrous ions(Fe2+).Results H2O2 could induce MO3.13 oxidative dam-age and lead to cell ferroptosis,while PCB2 could alle-viate MO3.13 oxidative damage and ferroptosis.Com-pared with the H2O2 model group,PCB2 intervention could significantly increase LDH content in MO3.13,reduce NO and H2O2 content,and improve SOD and CAT activity,and up-regulate the protein expression levels of NRF2,xCT,HO-1,ferritin,and GPX4.Conclusion PCB2 can enhance cellular antioxidant capacity and alleviate H2O2 induced MO3.13 oxidative damage through the NRF2/HO-1/xCT/GPX4 axis.

Result Analysis
Print
Save
E-mail