1.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
2.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
3.Differences in intestinal absorption characteristics of Rubus multibracteatus extract in normal and inflammatory pain model rats by in-vitro everted intestine sac method.
Ming-Li BAO ; Qing ZHANG ; Yang JIN ; Yi CHEN ; Jian-Qing PENG ; Si-Ying CHEN ; Zhi-Jie MA ; Jian LIAO ; Jing HUANG ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2025;50(16):4690-4704
This study compared the differences in intestinal absorption characteristics of eleven active components in Rubus multibracteatus(RM) extract(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, epicatechin, catechin, xanthotoxin, p-coumaric acid, caffeic acid, and apigenin-7-O-glucuronide) between normal rats and inflammatory pain model rats using the in-vitro everted intestinal sac model. The RM extract was administered at absorption concentrations of 25.0, 50.0, and 100.0 mg·mL~(-1). The contents of the eleven components in intestinal absorption solution samples were quantified by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), and their cumulative absorption(Q) and absorption rate constant(K_a) were calculated to evaluate the absorption characteristics of these components in normal rats and inflammatory pain model rats. The results show that except for catechin, epicatechin, and caffeic acid, the cumulative absorption-time curves of the other eight components(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, xanthotoxin, p-coumaric acid, and apigenin-7-O-glucuronide) exhibit an upward trend without saturation, with correlation coefficients(R~2) all > 0.9, indicating linear absorption. However, the overall absorption of all components is not dose-dependent with increasing concentration, suggesting that their absorption mechanisms are not solely passive diffusion. In both normal and model rats, the jejunum shows the highest absorption for all components except xanthotoxin. The overall absorption of seven components(excluding protocatechuic acid, caffeic acid, apigenin-7-O-glucuronide, and luteoloside) in normal rats is better than that in model rats across all intestinal segments. These findings indicate that the pathological state of inflammatory pain alters the intestinal absorption of RM extract, and its mechanism needs further investigation.
Animals
;
Rats
;
Intestinal Absorption/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/metabolism*
;
Disease Models, Animal
;
Pain/metabolism*
;
Intestines/drug effects*
;
Intestinal Mucosa/metabolism*
4.Comparative study on accuracy of three imaging methods in diagnosis of subacromial impingement syndrome.
Linfeng ZI ; Hongfu JIN ; Jianwei ZHU ; Guoxu ZHANG ; Yao TONG ; Sijie CHEN ; Wenze SHAO ; Xin TANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(10):1290-1295
OBJECTIVE:
To compare the diagnostic accuracy of supraspinatus muscle outlet X-ray film, oblique sagittal multislice helical CT (MSCT), and oblique sagittal MRI in the diagnosis of subacromial impingement syndrome (SIS).
METHODS:
A retrospective analysis was conducted on the imaging data of 106 patients diagnosed with SIS between January 2023 and December 2024. The cohort consisted of 32 males and 74 females, with ages ranging from 43 to 70 years (mean, 60.19 years). All patients underwent supraspinatus muscle outlet X-ray film, MSCT, and MRI scans, with MSCT further subjected to three-dimensional reconstruction. Two experienced radiologists independently evaluated the acromion morphology in each imaging modality using the Bigliani classification system. Inter-observer reliability was assessed via Kappa statistics. The CT three-dimensional reconstructions were used as the "gold standard". The overall consistency, Kappa values, sensitivity, and specificity of the three imaging modalities were calculated. Receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC) was computed.
RESULTS:
The inter-observer reliability for supraspinatus muscle outlet X-ray film, oblique sagittal MSCT, and oblique sagittal MRI was moderate, with Kappa values of 0.62, 0.63, and 0.55, respectively. When compared to the CT three-dimensional reconstructions as the "gold standard", the overall consistency was 88.7% (94/106), 62.3% (66/106), and 58.5% (62/106), respectively. The supraspinatus muscle outlet X-ray film showed excellent consistency (Kappa=0.77), whereas the consistency of MSCT and MRI was lower (Kappa=0.34 and 0.29, respectively). In terms of diagnostic sensitivity and specificity, the supraspinatus muscle outlet X-ray film outperformed oblique sagittal MSCT and oblique sagittal MRI in distinguishing various acromion types. ROC analysis demonstrated that the AUC for the supraspinatus muscle outlet X-ray film was consistently higher than for oblique sagittal MSCT and oblique sagittal MRI, with the highest diagnostic performance observed for type Ⅲ hooked acromion (AUC=0.939).
CONCLUSION
Supraspinatus muscle outlet X-ray film provides the highest diagnostic accuracy for acromion classification in SIS patients, particularly in identifying type Ⅲ hooked acromion, which is strongly associated with SIS. Given its superior sensitivity and consistency, it should be considered the primary screening tool. MSCT and MRI serve as valuable supplementary modalities for complex cases and preoperative evaluation.
Humans
;
Middle Aged
;
Male
;
Female
;
Shoulder Impingement Syndrome/diagnostic imaging*
;
Magnetic Resonance Imaging/methods*
;
Retrospective Studies
;
Aged
;
Adult
;
Imaging, Three-Dimensional
;
Sensitivity and Specificity
;
Tomography, Spiral Computed/methods*
;
Multidetector Computed Tomography/methods*
;
Reproducibility of Results
5.A Novel Mouse Model Unveils Protein Deficiency in Truncated CDKL5 Mutations.
Xue FENG ; Zi-Ai ZHU ; Hong-Tao WANG ; Hui-Wen ZHOU ; Ji-Wei LIU ; Ya SHEN ; Yu-Xian ZHANG ; Zhi-Qi XIONG
Neuroscience Bulletin 2025;41(5):805-820
Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) cause a severe neurodevelopmental disorder, yet the impact of truncating mutations remains unclear. Here, we introduce the Cdkl5492stop mouse model, mimicking C-terminal truncating mutations in patients. 492stop/Y mice exhibit altered dendritic spine morphology and spontaneous seizure-like behaviors, alongside other behavioral deficits. After creating cell lines with various Cdkl5 truncating mutations, we found that these mutations are regulated by the nonsense-mediated RNA decay pathway. Most truncating mutations result in CDKL5 protein loss, leading to multiple disease phenotypes, and offering new insights into the pathogenesis of CDKL5 disorder.
Animals
;
Disease Models, Animal
;
Mice
;
Protein Serine-Threonine Kinases/deficiency*
;
Mutation/genetics*
;
Epileptic Syndromes/genetics*
;
Humans
;
Dendritic Spines/pathology*
;
Spasms, Infantile/genetics*
;
Male
;
Seizures/genetics*
;
Mice, Inbred C57BL
6.Decreased neurotensin induces ovulatory dysfunction via the NTSR1/ERK/EGR1 axis in polycystic ovary syndrome.
Dongshuang WANG ; Meiling ZHANG ; Wang-Sheng WANG ; Weiwei CHU ; Junyu ZHAI ; Yun SUN ; Zi-Jiang CHEN ; Yanzhi DU
Frontiers of Medicine 2025;19(1):149-169
Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.
Polycystic Ovary Syndrome/physiopathology*
;
Female
;
Animals
;
Neurotensin/metabolism*
;
Receptors, Neurotensin/antagonists & inhibitors*
;
Mice
;
Ovulation/drug effects*
;
Humans
;
Granulosa Cells/metabolism*
;
Adult
;
Oocytes/metabolism*
;
MAP Kinase Signaling System
;
Signal Transduction
;
Follicular Fluid/metabolism*
;
Disease Models, Animal
;
Gonadotropin-Releasing Hormone/analogs & derivatives*
7.Lumbar Spondylolysis in Chinese Adults: Prevalence and Musculoskeletal Conditions.
Dong YAN ; Yan Dong LIU ; Ling WANG ; Kai LI ; Wen Shuang ZHANG ; Yi YUAN ; Jian GENG ; Kang Kang MA ; Feng Yun ZHOU ; Zi Tong CHENG ; Xiao Guang CHENG
Biomedical and Environmental Sciences 2025;38(5):598-606
OBJECTIVE:
To determine the prevalence of lumbar spondylolysis (LS) and the proportion of spondylolytic spondylolisthesis (SS) in China, and to evaluate the musculoskeletal status of patients with LS and SS.
METHODS:
Spine Computed Tomography (CT) images were collected from community populations aged 40 and above in a nationwide multi-center project. LS was diagnosed, and SS was graded by an experienced radiologist. Bone mineral density (BMD) and paraspinal muscle parameters were quantified based on CT images.
RESULTS:
One hundred and seventeen patients of a total of 3,317 individuals were diagnosed with LS, corresponding to a prevalence rate of 3.53%. 63 of the 1,214 males (5.18%) and 54 of the 2,103 females (2.57%) were diagnosed with LS. SS occurred in 64/121 vertebrae (52.89%). BMD was not associated with LS ( P = 0.341). The L5 extensor paraspinal muscle density was higher in the LS group than in the non-LS group. In the LS group, patients with SS had a smaller L5 paraspinal extensor muscle cross-sectional area than those without SS ( P = 0.003).
CONCLUSION
The prevalence of LS in Chinese adults was 3.53%, with prevalence rates of 5.18% in males and 2.57% in females. Patients with LS have higher muscle density, whereas those with SS have smaller muscle cross-sectional areas at the L5 level.
Humans
;
Male
;
Female
;
Middle Aged
;
China/epidemiology*
;
Prevalence
;
Adult
;
Lumbar Vertebrae/diagnostic imaging*
;
Spondylolysis/diagnostic imaging*
;
Aged
;
Bone Density
;
Tomography, X-Ray Computed
;
Aged, 80 and over
;
Spondylolisthesis/epidemiology*
;
East Asian People
8.Spatial-temporal Dynamics of Tuberculosis and Its Association with Meteorological Factors and Air Pollution in Shaanxi Province, China.
Heng Liang LYU ; Xi Hao LIU ; Hui CHEN ; Xue Li ZHANG ; Feng LIU ; Zi Tong ZHENG ; Hong Wei ZHANG ; Yuan Yong XU ; Wen Yi ZHANG
Biomedical and Environmental Sciences 2025;38(7):867-872
9.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*
10.Experimental study on anti-fatigue effect of Polysaccharides of Panax notoginseng
Pan-Pan WEI ; Zi-Jun YAN ; Meng-Yue DENG ; Die XIA ; Yu-Zhen DING ; Lei ZHANG ; Tong CHEN
The Chinese Journal of Clinical Pharmacology 2024;40(1):87-91
Objective To explore the effect of Polysaccharides of Panax notoginseng(PPN)on anti-exercise fatigue in mice.Methods One hundred male KM mice were randomly divided into negative control group,positive control group and experimental-L,-M,-H groups,with 20 cases per group.Experimental-L,-M,-H groups was given 100,200,400 mg·kg-1 PPN,respectively;positive control group was given 200 mg·kg-1 vitamin C;negative control group was given 0.1 mL·10 g-1 0.9%NaCl.Five groups were gavaged once a day for 28 days.After the last administration,the loaded swimming time was measured;after 90 minutes of the unloaded swimming test,the mice were allowed to rest for 30 minutes,the levels of lactic acid(LD),blood urea nitrogen(BUN),glycogen,and malondialdehyde(MDA)were measured,the safety of PPN with organ indices and histopathology.Results LD levels in negative control group,positive control group and experimental-L,-M,-Hgroupswere(4.76±0.84),(2.86±0.34),(3.00±0.69),(2.35±0.65)and(1.39±0.48)mg·kg-1;BUN contents were(13.65±1.25),(12.55±0.91),(12.12±1.24),(11.06±1.30)and(9.85±1.05)mmol·L-1;liver glycogen contents were(3.24±0.56),(11.11±2.16),(5.61±1.41),(6.60±1.49)and(12.05±2.25)mg·g-1;MDA levels were(2.36±0.21),(1.23±0.41),(1.93±0.23),(1.73±0.21)and(1.04±0.18)mg prot·mL-1.Compared with negative control group,the differences of above indexes in the positive control group and experimental-L,-M,-H groups were statistically significant(P<0.05,P<0.01,P<0.001).Conclusion PPN can increase exercise endurance in mice and has an anti-fatigue effect.This study provides a theoretical basis for the application of PPN in the field of anti-fatigue research.

Result Analysis
Print
Save
E-mail