1.Recent progress in the regulation of cellular immunity to erythrocyte homologous immunity.
Woxia HONG ; Changlin WU ; Chaopeng SHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):559-563
Chronic anemia patients (such as thalassemia) often rely on long-term red blood cell transfusion to sustain life. However, alloimmune reactions against blood group antigens can pose serious risks to the patients' clinical treatment and survival. The regulatory mechanisms of transfusion-related alloimmunity are not yet well understood. For example, some patients, despite long-term transfusions, do not develop alloimmune reactions, while others produce alloantibodies against multiple blood group antigens, making transfusion therapy increasingly difficult. Red blood cell blood group alloimmunity involves various immune cells, including antigen-presenting cells and different T cells. Many studies are exploring the regulatory roles and even potential interventions. This article reviews the correlation between cellular immunity and red blood cell blood group antigens in alloimmune responses, and explores the interaction between the two, as well as their impact on immune responses.
Humans
;
Immunity, Cellular/immunology*
;
Erythrocytes/immunology*
;
Blood Group Antigens/immunology*
;
Animals
;
Isoantibodies/immunology*
;
T-Lymphocytes/immunology*
2.Ginsenoside-Rg5 Synergizes with Imatinib to Enhances the Anti-Chronic Myeloid Leukemia K562 Cell Activity through PI3K/AKT/mTOR Pathway.
Di JIN ; Chang-Qing GUI ; Qian-Qian YE ; Guo-Fang DENG ; Chang-Ling ZHU ; Li XU
Journal of Experimental Hematology 2025;33(1):1-8
OBJECTIVE:
To investigate the synergistic effect and its mechanism of ginsenoside-Rg5 in combination with imatinib in inhibiting proliferation of chronic myeloid leukemia K562 cells.
METHODS:
K562 cells were treated with ginsenoside-Rg5 and imatinib. Cell survival was detected by CCK-8 assay, and IC50 were calculated separately for each drug. Based on the value of IC50 of ginsenoside-Rg5 and imatinib, an appropriate concentration gradient was selected for the combination. The synergistic effect of the two drug was analyzed using the online software synergy finder. The effects of single or combination therapy on apoptosis rate and the cell cycle distribution of K562 cells were analyzed by flow cytometry. Western blot was used to detect the expression of PI3K/AKT/mTOR signaling pathway related proteins and apoptosis related proteins in K562 cells after single or combination therapy.
RESULTS:
Ginsenoside-Rg5 and imatinib were able to inhibit the proliferative activity of K562 cells in a dosedependent manner(r =-0.991, r =-0.942). The synergy score ZIP >10 was measured by Synergy Finder online software, indicating that ginsenoside-Rg5 and imatinib act synergistically on K562 cells. The apoptotic rates of K562 cells after single treatments with ginsenoside-Rg5 and imatinib were 11.96% and 8.13%, respectively, while the rate increased to 21.35% with the combination of two drugs, the apoptosis rate in the combination group was higher than that in the single-drug group ( P <0.05). The proportion of K562 cells in the G0/G1 phase was significantly increased with the combined treatment of two drugs( P <0.05). The protein expression levels of p-PI3K, p-AKT, p-mTOR in K562 cells treated with the combination were significantly decreased, with noticeable downregulation of BCL-2 and upregulation of BAX, leading to a decreased Bcl-2/BAX ratio, while no significant changes were observed in the non-phosphorylated forms of PI3K, AKT, and mTOR proteins.
CONCLUSION
The combination of ginsenoside-Rg5 and imatinib can inhibit the proliferation of CML cells and induce apoptosis, and the mechanism may act through PI3K/AKT/mTOR signaling pathways.
Humans
;
Ginsenosides/pharmacology*
;
Imatinib Mesylate
;
K562 Cells
;
TOR Serine-Threonine Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction/drug effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism*
;
Drug Synergism
;
Apoptosis/drug effects*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cell Proliferation/drug effects*
3.A Retrospective Analysis of Irregular Erythrocyte Antibodies in the Blood Transfusion Department of People's Hospital of Xinjiang Uygur Autonomous Region from 2011 to 2022.
Ru-Bin WANG ; Hui-Jun LI ; Fei LI ; Wei CHEN
Journal of Experimental Hematology 2025;33(1):211-216
OBJECTIVE:
The distribution of irregular erythrocyte antibodies in the blood transfusion department of the People's Hospital of Xinjiang Uygur Autonomous Region from 2011 to 2022 and the relationship between irregular erythrocyte antibodies and ethnicity, gender, pregnancy history, blood transfusion history were retrospectively analyzed.
METHODS:
The irregular antibody screening data of patients who were proposed to receive blood transfusions in the clinical blood transfusion safety and blood management software of our hospital from 2011 to 2022 were collected for a retrospective study, and the distribution of irregular erythrocyte antibodies from 2011 to 2022 was analyzed. The relationship between ethnicity, gender, pregnancy history, blood transfusion history and the detection rate of irregular erythrocyte antibodies was further analyzed.
RESULTS:
From 2011 to 2022, the positive detection rate of irregular erythrocyte antibodies in 329 270 samples was 0.77%. Rh blood group (43.72%), Lewis blood group (9.90%) and MNS blood group (6.44%) accounted for the highest proportion of irregular erythrocyte antibody positive samples. In Rh blood group, the proportion of anti-D and anti-E in positive samples was the highest, with 19.09% and 16.06%, respectively. In MNS blood group, the proportion of anti-M in positive samples was the highest (5.46%). In Lewis blood group, the proportion of anti-Lea in positive samples was the highest (8.80%). Compared with other ethnic groups, the detection rates of irregular erythrocyte antibodies were significantly higher in Han, Hui and Uyghur ethnic groups (P < 0.001). Irregular erythrocyte antibody positive samples in Rh blood group system were concentrated in Han and Uygur ethnic groups. Compared to males and patients without a history of blood transfusion and pregnancy, female patients and patients with a history of blood transfusion and pregnancy had significantly higher detection rates of irregulart erythrocyte antibodies (P < 0.01).
CONCLUSION
The results of irregular antibody screening before blood transfusion showed that Rh blood group system antibodies were the main type of irregular antibodies, and the screening of various Rh blood group antigens should be strengthened. And the screening should be focused on female, patients with blood transfusion history and pregnancy history, as well as ethnic minority patients.
Humans
;
Retrospective Studies
;
Female
;
Blood Transfusion
;
China
;
Rh-Hr Blood-Group System/immunology*
;
Male
;
Erythrocytes/immunology*
;
Pregnancy
;
Isoantibodies/blood*
;
Blood Grouping and Crossmatching
;
Antibodies
;
Adult
;
Blood Group Antigens/immunology*
4.Advances in Study of Erythroblastic Island Macrophages--Review.
Journal of Experimental Hematology 2025;33(1):292-295
Bone marrow microenvironment is the environment in which hematopoietic stem cells live, mainly composed of bone marrow stromal cells, microvessels, nerves, and cytokines secreted by stromal cells. The bone marrow microenvironment plays a crucial role in the self-renewal, directed differentiation and proliferation of hematopoietic stem cells and the regulation of proliferation, differentiation and maturation of hematopoietic cells. A class of macrophages exists in the bone marrow microenvironment, the bone marrow-resident tissue macrophages, which plays a crucial role in maintaining homeostasis in vivo, and three subpopulations of bone marrow-resident tissue macrophages have been characterized: erythroblastic island macrophages (EIMs), hematopoietic stem cell niche macrophages, and bone macrophages. This review focuses on the functions, surface markers and modeling of EIMs.
Macrophages/cytology*
;
Humans
;
Erythroblasts/cytology*
;
Animals
;
Hematopoietic Stem Cells/cytology*
5.Metabolic Characteristics of 18F-FDG in Different Types of Myeloid Leukemia Cells and Tumor-Bearing Nude Mice.
Xi CHEN ; Qin YAN ; Xiang QIN ; Li ZHANG ; Yue FENG ; Qian CHEN ; Si-Li LONG ; Wen-Jun LIU
Journal of Experimental Hematology 2025;33(2):325-330
OBJECTIVE:
To investigate the metabolic characteristics of 18F-fluorodeoxyglucose (18F-FDG) in myeloid leukemia by in vitro culture of myeloid leukemia cells and construction of tumor-bearing nude mouse model.
METHODS:
U937, THP-1, HL60 and K562 cells were cultured in vitro. The cells in logarithmic growth phase (l×10 5 cells/well) were added with 18F-FDG, and the uptake rate of 18F-FDG was measured at 15, 30, 60 and 120 min after addation, respectively. The four kinds of cells were inoculated subcutaneously into the hind limbs of nude mice to establish a tumor-bearing nude mouse model. When the tumor size was about 500 mm3, 18F-FDG was injected through the tail vein of the mice, and positron emission tomography/computed tomography was performed at 60 min after injection. The morphology of tumor-bearing cells was observed by hematoxylin-eosin (HE) staining in serial pathological sections.
RESULTS:
After co-incubation with 18F-FDG, the 18F-FDG uptake rates of U937 cells were significantly higher than THP-1, HL60 and K562 cells at 4 time points (all P <0.05), and THP-1 cells were higher than K562 cells (all P <0.05). The uptake rate of 18F-FDG by leukemia cells was rapid in the first 60 min, then tended to be stable. Pathological analysis showed that subcutaneous inoculation of U937, THP-1, HL60 and K562 cells could successfully establish tumor-bearing nude mouse models of myeloid leukemia. The 18F-FDG uptake value in U937 tumor-bearing nude mice was significantly higher than THP-1, HL60 and K562 tumor-bearing nude mice (all P <0.01). The 18F-FDG uptake values in THP-1 and HL60 tumor-bearing nude mice were significantly higher than that in K562 tumor-bearing nude mice (both P <0.01).
CONCLUSION
The tumor-bearing nude mouse model of myeloid leukemia can be successfully constructed by subcutaneous inoculation. The 18F-FDG uptake rate of acute myeloid leukemia (AML) cells is higher in cells cultured in vitro and tumor-bearing nude mouse model. 18F-FDG may have better clinical application value for AML.
Animals
;
Fluorodeoxyglucose F18/metabolism*
;
Mice, Nude
;
Mice
;
Humans
;
Leukemia, Myeloid/diagnostic imaging*
;
HL-60 Cells
;
K562 Cells
;
Cell Line, Tumor
;
U937 Cells
6.Analysis of Genetic Test Results and Red Blood Cell Parameters of β-Thalassemia in Kunming Area.
Xiao-Lu GUO ; Ya-Min WU ; Yan-Liang ZHANG
Journal of Experimental Hematology 2025;33(2):481-485
OBJECTIVE:
To investigate the gene carrier rate and genotype distribution characteristics of thalassemia in the population of Kunming, and compare the differences of red blood cell (RBC) parameters between β+ heterozygous carriers, β0 heterozygous carriers and healthy population, as well as between different sexes of adults aged 18-45 years.
METHODS:
A retrospective analysis of 3 195 cases of thalassemia gene screened in the First Affiliated Hospital of Kunming Medical University from April 1, 2020 to March 31, 2022 was performed to detect 21 mutations of β-globin genes which was common in Chinese people using fluorescence PCR melting curve method. Patients with single heterozygous carrying β-thalassemia gene were divided into β+ heterozygote group and β0 heterozygote group, while the control group consisted of 219 healthy individuals. Four indices, including RBC, hemoglobin (Hb), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were collected from all β heterozygous carriers and 219 healthy people, and compared between β+ heterozygote group, β0 heterozygote group and control group, as well as between β+ heterozygous carriers, β0 heterozygous carriers and healthy population of different sexes aged 18-45 years.
RESULTS:
There were 688 cases confirmed thalassemia gene carriers, accounting for 21.53%. Among them, 322 cases were found to have β-globin gene mutations, including 145 cases of β+ heterozygote, 151 cases of β0 heterozygote, and 14 cases of β+ homozygotes as well as β+ and β0 dual heterozygotes. Additionally, 12 cases were found to have simultaneous mutation or deletion of β-globin and α-globin. The carrier rate of CD26 G>A mutation in β+ thalassemia was the highest, accounting for 57.9%, while in β0 thalassemia CD17 A>T was the highest, accounting for 46.4%. The erythrocyte parameters of 296 β heterozygous mutation carriers were compared with the normal reference interval, and it was found that 218 cases with RBC value greater than the highest value of reference interval, while 105, 281, and 269 cases with Hb, MCV, and MCH value less than the lowest value of reference interval, respectively. There were significant differences in the 4 erythrocyte parameters between β+ heterozygotes, β0 heterozygotes and healthy individuals (all P < 0.001), and further comparison between different sexes also showed significant differences (all P < 0.001).
CONCLUSIONS
The carrier rates of thalassemia gene and β-thalassemia heterozygote are both at high level in Kunming, and there are significant differences in the erythrocyte parameters between β+ heterozygous carriers, β0 heterozygous carriers and healthy individuals. When genetic counseling, it is necessary to inform and strengthen screening among adults of marriageable age to prevent birth of children with severe thalassemia.
Humans
;
beta-Thalassemia/blood*
;
Adult
;
Heterozygote
;
Male
;
Female
;
beta-Globins/genetics*
;
Retrospective Studies
;
Middle Aged
;
Mutation
;
Adolescent
;
Genotype
;
Erythrocytes
;
Erythrocyte Indices
;
Young Adult
;
China
;
Genetic Testing
;
Asian People/genetics*
7.The Frequency Difference of Red Blood Cell Group Gene Haplotypes among Han, Indian and Uyghur Populations in Shenzhen Region.
Tong LIU ; Jin QIU ; Fan WU ; Yan-Lia LIANG ; Li-Yan SUN ; Zhi-Hui DENG ; Shuang LIANG
Journal of Experimental Hematology 2025;33(3):863-868
OBJECTIVE:
To study the genetic polymorphism of red blood cell blood group among in Shenzhen Han, Indian and Xinjiang Uyghur populations, to provide scientific basis for the demand prediction and collection strategy of rare blood group, and to explore the genetic differences of blood group between Han and Caucasians.
METHODS:
The haplotypes of antigen coding genes of 10 target blood group systems from 87 Han Chinese and 50 Indian blood donors in Shenzhen, and 49 healthy Uyghur people in Xinjiang were obtained by three-generation sequencing technology, and the polymorphism and frequency characteristics were analyzed.
RESULTS:
Only a single genotype was detected the Langereis and Vel blood group systems in samples from three different populations. Only one genotype of Dombrock blood group was detected in Shenzhen Han, and Junior blood group in Xinjiang Uygur populations. In the MNS, Duffy, Kidd, Dombrock and Junior blood group systems, the haplotype frequency of Indian and Uyghur people was significantly different from that of Han people. Compared with the Han ethnic group, the rare blood group s-, Fy(a-), Jk(a-b-), and Do(a+b-) have a higher frequency among the Uyghur and Indian populations.
CONCLUSION
Haplotype frequencies of antigen genes for MNS, Duffy, Kidd, Dombrock and Junior blood group system in Shenzhen Han, Indian and Uyghur populations displayed a polymorphic difference with unique distribution characteristics different from the ethnic groups in other regions.
Humans
;
Blood Group Antigens/genetics*
;
China/ethnology*
;
Erythrocytes
;
Ethnicity/genetics*
;
Gene Frequency
;
Genotype
;
Haplotypes
;
India/ethnology*
;
Polymorphism, Genetic
;
White People/genetics*
;
Central Asian People/genetics*
;
East Asian People/genetics*
8.Study on the Mechanism of Piperlongumine Inducing Ferroptosis in K562/ADR Cells through the miR-214-3p/GPX4 Pathway.
Ting ZHANG ; Cui-Cui WANG ; Cong ZHU ; Xin-Yu ZHOU ; Xiu-Hong JIA
Journal of Experimental Hematology 2025;33(4):1007-1015
OBJECTIVE:
To investigate the effect of piperlongumine(PL) on the proliferation and ferroptosis of human adriamycin-resistant chronic myeloid leukemia K562/ADR cells, and to explore its possible molecular mechanism.
METHODS:
CCK-8 assay was used to detect the effect of PL on the survival rate of K562/ADR cells and to screen the appropriate drug concentration. After K562/ADR cells were treated with low, medium and high concentrations of PL(2, 4, and 6 μmol/L), EdU proliferation assay and plate colony formation assay were used to detect cell proliferation and colony formation ability. CCK-8 assay was used to detect the effects of different inhibitors (Fer-1, Z-VAD, Nec-1) combined with PL on cell proliferation. The intracellular Fe2+, ROS, malondialdehyde(MDA) and glutathine(GSH) contents were respectively detected by iron ion colorimetry, DCFH-DA fluorescent probe, MDA and GSH kits. RT-qPCR and Western blot were respectively used to detect the expression level of GPX4 mRNA and protein in cells. Bioinformatics websites predicted miRNA that could target and regulate GPX4 . RT-qPCR was used to detect the effects of different concentrations of PL on the expression levels of the predicted miRNA. Dual luciferase gene reporter assay was used to verify the targeting relationship between miR-214-3p and GPX4 . After treating cells with PL or PL+miR-214-3p inhibitor, the Fe2+, ROS, MDA, GSH centents and GPX4 protein expression levels in cells were detected.
RESULTS:
PL inhibited K562/ADR cell proliferation in a concentration-dependent manner(r =0.979). Compared with the blank control group, the survival rate, EdU positive cells rate in low, medium and high concentration PL groups were significantly decreased (P < 0.01). Compared with the PL group alone, the survival rate of cells in the Z-VAD+PL group was increased slightly (P < 0.05). The cell survival rate was significantly increased in medium or high concentration PL+Fer-1 group (P < 0.01). Compared with blank control group, ROS expression level in low concentration PL group was slightly increased (P < 0.05), and GSH content was slightly decreased (P < 0.05). In medium and high concentration PL groups, the contents of Fe2+, ROS and MDA were significantly increased (P < 0.01), while the contents of GSH, expression of GPX4 mRNA and protein were significantly decreased(P < 0.01). Bioinformatics prediction and double luciferase reporter gene experiment confirmed the targeting relationship between GPX4 and miR-214-3p. Compared with the blank control group, the expression level of miR-214-3p in cells of medium and high concentration PL groups was significantly increased (P < 0.01). Compared with PL group alone, the intracellular Fe2+, ROS and MDA contents in PL+miR-214-3p inhibitor group were all decreased (P < 0.01), while GSH content and GPX4 protein expression levels were significantly increased (P < 0.01).
CONCLUSION
Medium and high concentrations of PL can inhibit the proliferation of K562/ADR cells by inducing ferroptosis, which is related to the regulation of miR-214-3p pathway.
Humans
;
Ferroptosis/drug effects*
;
MicroRNAs/metabolism*
;
Dioxolanes/pharmacology*
;
Cell Proliferation/drug effects*
;
K562 Cells
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Reactive Oxygen Species
;
Doxorubicin/pharmacology*
;
Signal Transduction
;
Piperidones
9.Establishment and Preliminary Application of qPCR-Based Genotyping Method for Diego, MNS and Kell Blood Groups of Red Blood Cells.
Bing ZHANG ; Gang XU ; Wen-Jian HU ; Xiao-Zhen HONG ; Xian-Guo XU
Journal of Experimental Hematology 2025;33(5):1429-1434
OBJECTIVE:
To establish a genotyping method for Diego, MNS and Kell blood groups based on quantitative real-time PCR (qPCR) technology, and preliminarily apply it to the screening of rare blood groups in blood donors.
METHODS:
Blood group gene standards containing heterozygous and homozygous alleles were prepared by blood group serological and PCR-SBT methods. Specific amplification primers and hybridization probes were designed, and explore to establish the qPCR method for detecting Diego, MNS, and Kell blood group genotypes. Then the established qPCR method was used to identify blood group genotypes of 186 blood donor samples.
RESULTS:
A method based on qPCR technology was established to identify Dia/Dib, S/s and K/k blood group antigens. The genotyping results of the gene standard samples were consistent with the serological testing results and genotypes detected by PCR-SBT. qPCR testing of 186 samples identified 11 cases of DI*A/B heterozygosity and 19 cases of GYPB*S/s heterozygosity, and the rest were DI*B/B, GYPB*s/s, KEL*02/02 homozygosity. No rare blood group genotypes of DI*A/A, GYPB*S/S, KEL*01.01/01.01 were found.
CONCLUSION
The established qPCR method is suitable for genotyping on Diego, MNS and Kell blood group, and it can be used for batch screening of blood donors and the establishment of rare blood group bank.
Humans
;
Genotype
;
Genotyping Techniques/methods*
;
Real-Time Polymerase Chain Reaction/methods*
;
Blood Group Antigens/genetics*
;
Kell Blood-Group System/genetics*
;
Blood Donors
;
Blood Grouping and Crossmatching/methods*
;
Erythrocytes
;
MNSs Blood-Group System/genetics*
10.Inhibition of the mitochondrial metabolic enzyme OGDC affects erythroid development.
Bin HU ; Mao-Hua LI ; Han GONG ; Lu HAN ; Jing LIU
Acta Physiologica Sinica 2025;77(3):395-407
Mitochondrial metabolism is crucial for providing energy and heme precursors during erythroid development. Oxoglutarate dehydrogenase complex (OGDC) is a key enzyme in the mitochondrial tricarboxylic acid (TCA) cycle, and its level gradually increases during erythroid development, indicating its significant role in erythroid development. The aim of the present study was to explore the role and mechanism of OGDC in erythroid development. In this study, we treated erythroid progenitor cells with CPI-613, a novel lipoic acid analog that competitively inhibits OGDC. The results showed that CPI-613 inhibited erythropoietin (EPO)-induced differentiation and enucleation of human CD34+ hematopoietic stem cells into erythroid cells, suppressed cell proliferation, and induced apoptosis. The results of in vivo experiments showed that CPI-613 also hindered the recovery of mice from acute hemolytic anemia. Further mechanism research results showed that CPI-613 increased reactive oxygen species (ROS) in erythroid progenitor cells, inhibited mitochondrial respiration, caused mitochondrial damage, and suppressed heme synthesis, thereby inhibiting erythroid differentiation. Clinical research results showed that oxoglutarate dehydrogenase (OGDH) protein expression levels were up-regulated in bone marrow cells of polycythemia vera (PV) patients. Treatment with CPI-613 significantly inhibited the excessive proliferation and differentiation of erythroid progenitor cells of the PV patients. These findings demonstrates the critical role of OGDC in normal erythroid development, suggesting that inhibiting its activity could be a novel therapeutic strategy for treating PV.
Animals
;
Humans
;
Mitochondria/metabolism*
;
Mice
;
Ketoglutarate Dehydrogenase Complex/physiology*
;
Cell Differentiation/drug effects*
;
Cells, Cultured
;
Erythropoiesis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Cell Proliferation/drug effects*
;
Erythroid Precursor Cells/cytology*
;
Apoptosis/drug effects*
;
Thioctic Acid/pharmacology*
;
Caprylates
;
Sulfides

Result Analysis
Print
Save
E-mail