1.The addition of 5-aminolevulinic acid to HBSS protects testis grafts during hypothermic transportation: a novel preservation strategy.
Meng-Hui MA ; Pei-Gen CHEN ; Jun-Xian HE ; Hai-Cheng CHEN ; Zhen-Han XU ; Lin-Yan LV ; Yan-Qing LI ; Xiao-Yan LIANG ; Gui-Hua LIU
Asian Journal of Andrology 2025;27(4):454-463
The aim of this investigation was to determine the optimal storage medium for testicular hypothermic transportation and identify the ideal concentration for the application of the protective agent 5-aminolevulinic acid (5-ALA). Furthermore, this study aimed to explore the underlying mechanism of the protective effects of 5-ALA. First, we collected and stored mouse testicular fragments in different media, including Hank's balanced salt solution (HBSS; n = 5), Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12; n = 5), and alpha-minimum essential medium (αMEM; n = 5). Storage of testicular tissue in HBSS preserved the integrity of testicular morphology better than that in the DMEM/F12 group ( P < 0.05) and the αMEM group ( P < 0.01). Testicular fragments were subsequently placed in HBSS with various concentrations of 5-ALA (0 [control], 1 mmol l -1 , 2 mmol l -1 , and 5 mmol l -1 ) to determine the most effective concentration of 5-ALA. The 2 mmol l -1 5-ALA group ( n = 3) presented the highest positive rate of spermatogonial stem cells compared with those in the control, 1 mmol l -1 , and 5 mmol l -1 5-ALA groups. Finally, the tissue fragments were preserved in HBSS with control ( n = 3) and 2 mmol l -1 5-ALA ( n = 3) under low-temperature conditions. A comparative analysis was performed against fresh testes ( n = 3) to elucidate the underlying mechanism of 5-ALA. Gene set enrichment analysis (GSEA) for WikiPathways revealed that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was downregulated in the 2 mmol l -1 5-ALA group compared with that in the control group (normalized enrichment score [NES] = -1.57, false discovery rate [FDR] = 0.229, and P = 0.019). In conclusion, these data suggest that using 2 mmol l -1 5-ALA in HBSS effectively protected the viability of spermatogonial stem cells upon hypothermic transportation.
Male
;
Animals
;
Testis/cytology*
;
Aminolevulinic Acid/pharmacology*
;
Mice
;
Organ Preservation/methods*
;
Organ Preservation Solutions/pharmacology*
;
Cryopreservation/methods*
2.Correlation of LncRNA-PVT1 with Prognosis of Children with Acute Lymphoblastic Leukemia.
Shan-Wei LIU ; Yan-Fen LIU ; Qing-Hua MENG ; Xian-Jun SUN
Journal of Experimental Hematology 2025;33(1):39-44
OBJECTIVE:
To investigate the expression of long non-coding RNA plasmacytoma variant translocation 1 (lncRNA-PVT1) in children with acute lymphoblastic leukemia (ALL) and its correlation with prognosis.
METHODS:
Clinical data of 64 children with ALL were retrospectively analyzed. All children received standardized treatment according to CCLG-ALL-2015 protocol, and their overall survival (OS) was followed up. Bone marrow examination and lncRNA-PVT1 examination were performed before first diagnosis (T1), early intensive therapy (T2), consolidation therapy (T3), delayed intensive therapy (T4), and maintenance therapy (T5). Bone marrow samples of 25 children with thrombocytopenic purpura were collected during the same period as control group. LncRNA-PVT1 expression was compared between ALL group and control group. ALL children were divided into high-risk group and non-high-risk group according to the risk factors at T3, and the expression changes of lncRNA-PVT1 were analyzed. The correlation of lncRNA-PVT1 with clinical features and prognosis of ALL children was analyzed.
RESULTS:
The expression of lncRNA-PVT1 in ALL children was significantly higher than that in control group (P < 0.001). ROC curve analysis showed that the area under curve (AUC) of lncRNA-PVT1 for ALL diagnosis was 0.919(95%CI : 0.863-0.975), the optimal cut-off value was 1.465, sensitivity was 87.50%, and specificity was 98.80%. ALL children were divided into low lncRNA-PVT1 group (lncRNA-PVT1< 2.18) and high lncRNA-PVT1 group (lncRNA-PVT1≥2.18) according to the median lncRNA-PVT1 value (2.18). The high lncRNA-PVT1 group had higher Day 33 MRD compared with low lncRNA-PVT1 group (P < 0.01). At T3, T4 and T5, the expression of lncRNA-PVT1 in high-risk group was significantly higher than that in non-highrisk group (all P < 0.01). The expression of lncRNA-PVT1 were significantly increased in high-risk group at 5 time points (P < 0.001), while, there was no significant difference in non-high-risk group (P >0.05). The median OS of low lncRNA-PVT1 group was 35(9-37) months, which was significantly higher than 25(5-33) months of high lncRNA-PVT1 group (P < 0.01). Univariate and multivariate Cox regression analysis showed that Day 33 MRD (>10-2) and lncRNA-PVT1 (≥2.18) were independent risk factors for OS in ALL children (both P < 0.05).
CONCLUSION
LncRNA-PVT1 is involved in the pathogenesis of ALL in children and closely related to the prognosis.
Humans
;
RNA, Long Noncoding/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis*
;
Prognosis
;
Retrospective Studies
;
Child
;
Male
;
Female
;
Child, Preschool
;
Adolescent
3.Targeting stem-property and vasculogenic mimicry for sensitizing paclitaxel therapy of triple-negative breast cancer by biomimetic codelivery.
Siqi WU ; Qing TANG ; Weifeng FANG ; Zhe SUN ; Meng ZHANG ; Ergang LIU ; Yang CAO ; Yongzhuo HUANG
Acta Pharmaceutica Sinica B 2025;15(6):3226-3242
Triple-negative breast cancer (TNBC) is aggressive, with high recurrence rates and poor prognosis. Paclitaxel (PTX) remains a key chemotherapeutic agent for TNBC, but its efficacy diminishes due to the emergence of drug resistance, largely driven by cancer stem-like cells (CSCs), vasculogenic mimicry (VM) formation and tumor immunosuppressive microenvironment (TIME). Pyruvate kinase M2 (PKM2) is highly expressed in TNBC, and is a potential target for TNBC treatment. In this study, we developed a biomimetic codelivery system using albumin nanoparticles (termed S/P NP) to co-encapsulate PTX and shikonin (SHK), a natural inhibitor of PKM2. By inhibiting PKM2, SHK suppressed β-Catenin signaling, thereby reversing CSC stemness and preventing VM formation. The S/P NP system exhibited tumor-targeting delivery effect and significantly inhibited TNBC growth and lung metastasis. Mechanistically, the treatment reversed epithelial-mesenchymal transition (EMT) and stem-like properties of TNBC cells, suppressed VM formation, and remodeled the TIME. It reduced immunosuppressive cells (M2 macrophages, MDSCs) while promoting anti-tumor immunity (M1 macrophages, dendritic cells, cytotoxic T cells, and memory T cells). This dual-action strategy holds promise for improving TNBC therapy by targeting CSCs, VM, and the immune microenvironment, and for overcoming PTX resistance and reducing metastasis.
4.Expert consensus on apical microsurgery.
Hanguo WANG ; Xin XU ; Zhuan BIAN ; Jingping LIANG ; Zhi CHEN ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Xi WEI ; Kaijin HU ; Qintao WANG ; Zuhua WANG ; Jiyao LI ; Dingming HUANG ; Xiaoyan WANG ; Zhengwei HUANG ; Liuyan MENG ; Chen ZHANG ; Fangfang XIE ; Di YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Yi DU ; Junqi LING ; Lin YUE ; Xuedong ZHOU ; Qing YU
International Journal of Oral Science 2025;17(1):2-2
Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.
Microsurgery/standards*
;
Humans
;
Apicoectomy
;
Contraindications, Procedure
;
Tooth Apex/diagnostic imaging*
;
Postoperative Complications/prevention & control*
;
Consensus
;
Treatment Outcome
5.Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis.
Lu ZHANG ; Chen LIN ; Zhuo CHEN ; Lin YUE ; Qing YU ; Benxiang HOU ; Junqi LING ; Jingping LIANG ; Xi WEI ; Wenxia CHEN ; Lihong QIU ; Jiyao LI ; Yumei NIU ; Zhengmei LIN ; Lei CHENG ; Wenxi HE ; Xiaoyan WANG ; Dingming HUANG ; Zhengwei HUANG ; Weidong NIU ; Qi ZHANG ; Chen ZHANG ; Deqin YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Jingzhi MA ; Shuli DENG ; Xiaoli XIE ; Xiuping MENG ; Jian YANG ; Xuedong ZHOU ; Zhi CHEN
International Journal of Oral Science 2025;17(1):4-4
Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient's general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.
Humans
;
Calcium Compounds/therapeutic use*
;
Consensus
;
Dental Pulp
;
Dentition, Permanent
;
Oxides/therapeutic use*
;
Pulpitis/therapy*
;
Pulpotomy/standards*
6.Expert consensus on intentional tooth replantation.
Zhengmei LIN ; Dingming HUANG ; Shuheng HUANG ; Zhi CHEN ; Qing YU ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Jiyao LI ; Xiaoyan WANG ; Zhengwei HUANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Lan ZHANG ; Jin ZHANG ; Xiaoli XIE ; Jinpu CHU ; Kehua QUE ; Xuejun GE ; Xiaojing HUANG ; Zhe MA ; Lin YUE ; Xuedong ZHOU ; Junqi LING
International Journal of Oral Science 2025;17(1):16-16
Intentional tooth replantation (ITR) is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions. ITR is defined as the deliberate extraction of a tooth; evaluation of the root surface, endodontic manipulation, and repair; and placement of the tooth back into its original socket. Case reports, case series, cohort studies, and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery. However, variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials. This heterogeneity in protocols may cause confusion among dental practitioners; therefore, guidelines and considerations for ITR should be explicated. This expert consensus discusses the biological foundation of ITR, the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration, and the main complications of this treatment, aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies; the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.
Humans
;
Tooth Replantation/methods*
;
Consensus
;
Periapical Periodontitis/surgery*
7.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*
8.Expert consensus on the rational application of the biological clock in stomatology research
Kai YANG ; Moyi SUN ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Wei GUO ; Songsong ZHU ; Jia-Wei ZHENG ; Jie ZHANG ; Zhijun SUN ; Jie REN ; Jiawen ZHENG ; Xiaoqiang LV ; Hong TANG ; Dan CHEN ; Qing XI ; Xin HUANG ; Heming WU ; Hong MA ; Wei SHANG ; Jian MENG ; Jichen LI ; Chunjie LI ; Yi LI ; Ningbo ZHAO ; Xuemei TAN ; Yixin YANG ; Yadong WU ; Shilin YIN ; Zhiwei ZHANG
Journal of Practical Stomatology 2024;40(4):455-460
The biological clock(also known as the circadian rhythm)is the fundamental reliance for all organisms on Earth to adapt and survive in the Earth's rotation environment.Circadian rhythm is the most basic regulatory mechanism of life activities,and plays a key role in maintaining normal physiological and biochemical homeostasis,disease occurrence and treatment.Recent studies have shown that the biologi-cal clock plays an important role in the development of oral tissues and in the occurrence and treatment of oral diseases.Since there is cur-rently no guiding literature on the research methods of biological clock in stomatology,researchers mainly conduct research based on pub-lished references,which has led to controversy about the research methods of biological clock in stomatology,and there are many confusions about how to rationally apply the research methods of circadia rhythms.In view of this,this expert consensus summarizes the characteristics of the biological clock and analyzes the shortcomings of the current biological clock research in stomatology,and organizes relevant experts to summarize and recommend 10 principles as a reference for the rational implementation of the biological clock in stomatology research.
9.Expert consensus on the evaluation and rehabilitation management of shoulder syndrome after neek dissection for oral and maxillofacial malignancies
Jiacun LI ; Moyi SUN ; Jiaojie REN ; Wei GUO ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Zhijun SUN ; Jian MENG ; Wei SHANG ; Shaoyan LIU ; Jie ZHANG ; Jicheng LI ; Yue HE ; Chunjie LI ; Kai YANG ; Zhongcheng GONG ; Qing XI ; Bing HAN ; Huaming MAI ; Yanping CHEN ; Jie ZHANG ; Yadong WU ; Chao LI ; Changming AN ; Chuanzheng SUN ; Hua YUAN ; Fan YANG ; Haiguang YUAN ; Dandong WU ; Shuai FAN ; Fei LI ; Chao XU ; Wei WEI
Journal of Practical Stomatology 2024;40(5):597-607
Neck dissection(ND)is one of the main treatment methods for oral and maxillofacial malignancies.Although ND type is in con-stant improvement,but intraoperative peal-pull-push injury of the accessory nerve,muscle,muscle membrane,fascia and ligament induced shoulder syndrome(SS)is still a common postoperative complication,combined with the influence of radiochemotherapy,not only can cause pain,stiffness,numbness,limited dysfunction of shoulder neck and arm,but also may have serious impact on patient's life quality and phys-ical and mental health.At present,there is still a lack of a systematic evaluation and rehabilitation management program for postoperative SS of oral and maxillofacial malignant tumors.Based on the previous clinical practice and the current available evidence,refer to the relevant lit-erature at home and abroad,the experts in the field of maxillofacial tumor surgery and rehabilitation were invited to discuss,modify and reach a consenusus on the etiology,assessment diagnosis,differential diagnosis,rehabilitation strategy and prevention of SS,in order to provide clinical reference.
10.Postmortem Diffusion of Aconitum Alkaloids and Their Metabolites in Rabbits
Jia-Hao LIANG ; Ming CHENG ; Xiao-Jun LU ; Yan-Hua SHI ; Yun SUN ; Qing-Lin GUAN ; Tao WANG ; Meng HU ; Ke-Ming YUN ; Hai-Yan CUI
Journal of Forensic Medicine 2024;40(2):186-191
Objective To explore the postmortem diffusion rule of Aconitum alkaloids and their metabo-lites in poisoned rabbits,and to provide a reference for identifying the antemortem poisoning or post-mortem poisoning of Aconitum alkaloids.Methods Twenty-four rabbits were sacrificed by tracheal clamps.After 1 hour,the rabbits were administered with aconitine LD50 in decocting aconite root powder by intragastric administration.Then,they were placed supine and stored at 25℃.The biological samples from 3 randomly selected rabbits were collected including heart blood,peripheral blood,urine,heart,liver,spleen,lung and kidney tissues at 0 h,4 h,8 h,12 h,24 h,48 h,72 h and 96 h after intragastric administration,respectively.Aconitum alkaloids and their metabolites in the biological samples were ana-lyzed by high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS).Results At 4 h after intragastric administration,Aconitum alkaloids and their metabolites could be detected in heart blood,peripheral blood and major organs,and the contents of them changed dynamically with the preservation time.The contents of Aconitum alkaloids and their metabolites were higher in the spleen,liver and lung,especially in the spleen which was closer to the stomach.The average mass fraction of benzoylmesaconine metabolized in rabbit spleen was the highest at 48 h after intragastric administration.In contrast,the contents of Aconitum alkaloids and their metabolites in kidney were all lower.Aconi-tum alkaloids and their metabolites were not detected in urine.Conclusion Aconitum alkaloids and their metabolites have postmortem diffusion in poisoned rabbits,diffusing from high-content organs(stomach)to other major organs and tissues as well as the heart blood.The main mechanism is the dispersion along the concentration gradient,while urine is not affected by postmortem diffusion,which can be used as the basis for the identification of antemortem and postmortem Aconitum alkaloids poisoning.

Result Analysis
Print
Save
E-mail