1.Endosomal catabolism of phosphatidylinositol 4,5-bisphosphate is fundamental in building resilience against pathogens.
Chao YANG ; Longfeng YAO ; Dan CHEN ; Changling CHEN ; Wenbo LI ; Hua TONG ; Zihang CHENG ; Yanling YAN ; Long LIN ; Jing ZHANG ; Anbing SHI
Protein & Cell 2025;16(3):161-187
Endosomes are characterized by the presence of various phosphoinositides that are essential for defining the membrane properties. However, the interplay between endosomal phosphoinositides metabolism and innate immunity is yet to be fully understood. Here, our findings highlight the evolutionary continuity of RAB-10/Rab10's involvement in regulating innate immunity. Upon infection of Caenorhabditis elegans with Pseudomonas aeruginosa, an increase in RAB-10 activity was observed in the intestine. Conversely, when RAB-10 was absent, the intestinal diacylglycerols (DAGs) decreased, and the animal's response to the pathogen was impaired. Further research revealed that UNC-16/JIP3 acts as an RAB-10 effector, facilitating the recruitment of phospholipase EGL-8 to endosomes. This leads to a decrease in endosomal phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and an elevation of DAGs, as well as the activation of the PMK-1/p38 MAPK innate immune pathway. It is noteworthy that the dimerization of UNC-16 is a prerequisite for its interaction with RAB-10(GTP) and the recruitment of EGL-8. Moreover, we ascertained that the rise in RAB-10 activity, due to infection, was attributed to the augmented expression of LET-413/Erbin, and the nuclear receptor NHR-25/NR5A1/2 was determined to be indispensable for this increase. Hence, this study illuminates the significance of endosomal PI(4,5)P2 catabolism in boosting innate immunity and outlines an NHR-25-mediated mechanism for pathogen detection in intestinal epithelia.
Animals
;
Caenorhabditis elegans/genetics*
;
Endosomes/immunology*
;
Caenorhabditis elegans Proteins/immunology*
;
Phosphatidylinositol 4,5-Diphosphate/immunology*
;
Immunity, Innate
;
Pseudomonas aeruginosa/immunology*
;
rab GTP-Binding Proteins/genetics*
;
Diglycerides/metabolism*
2.The nuclear phosphoinositide-p53 signalosome in the regulation of cell motility.
Xiaoting HOU ; Yu CHEN ; Bo ZHOU ; Fengting LIU ; Lingyun DAI ; Chunbo CHEN ; Noah D CARRILLO ; Vincent L CRYNS ; Richard A ANDERSON ; Jichao SUN ; Mo CHEN
Protein & Cell 2025;16(10):840-857
Dysregulation of p53 and phosphoinositide (PIPn) signaling are both key drivers of oncogenesis and metastasis. Our recent findings reveal a previously unrecognized interaction between these pathways, converging in the nucleus to form a PIPn-p53 signalosome that modulates nuclear AKT activation and downstream signaling, thereby influencing cancer cell survival and motility. This review examines recent insights into nuclear PIPn signaling in the context of established roles for p53 in cell dynamics and migration while also deliberating current research on how nuclear PIPns interact with p53 to form signalosomes that affect cell motility. We emphasize the critical role of PIPns in stabilizing p53 and activating de novo nuclear AKT signaling, which subsequently modulates key motility-related pathways. Understanding the unique operation and function of the PIPn-p53 signalosome in nuclear phosphatidylinositol 3-kinase (PI3K)-AKT activation offers novel therapeutic strategies for controlling cancer metastasis by targeting pertinent interactions and events.
Humans
;
Tumor Suppressor Protein p53/metabolism*
;
Signal Transduction
;
Cell Movement
;
Cell Nucleus/metabolism*
;
Phosphatidylinositols/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Animals
;
Neoplasms/pathology*
;
Phosphatidylinositol 3-Kinases/metabolism*
3.Mechanism of Zhongfeng Xingnao Decoction in improving microcirculatory disorders in cerebral hemorrhage based on network pharmacology and molecular docking techniques.
Xiao-Qin ZHONG ; Da-Feng HU ; Yu WANG ; Zhen-Qiu NING ; Min-Zhen DENG
China Journal of Chinese Materia Medica 2023;48(22):6115-6127
This study aimed to explore the mechanism of Zhongfeng Xingnao Decoction(ZFXN) in intervening microcirculatory di-sorders in cerebral hemorrhage by network pharmacology and molecular docking techniques. The information on the components of ZFXN was obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database, and the predicted targets of chemical components were obtained from PubChem and SwissTargetPrediction. The relevant targets of cerebral hemorrhage and microcirculatory disorders were collected from the GeneCards database, and the common targets of the components and diseases were analyzed by the Database for Annotation, Visualization, and Integrated Discovery(DAVID) for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. Visualization of the correlation network was carried out using Cytoscape software to further screen important chemical components for molecular docking prediction with disease targets. The animal experiment validation was performed using modified neurological severity score(mNSS), enzyme-linked immunosorbent assay(ELISA), quantitative real-time polymerase chain reaction(qRT-PCR), immunofluorescence, and Western blot to detect the effects of ZFXN intervention in mice with cerebral hemorrhage. The results showed that there were 31 chemical components and 856 targets in the four drugs contained in ZFXN, 173 targets for microcirculatory disorders in cerebral hemorrhage, and 57 common targets for diseases and components. The enrichment analysis showed that common targets were mainly involved in biological processes, such as cell proliferation and apoptosis, and signaling pathways, such as tumor pathway, viral infection, phosphoinositide-3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking results revealed that the common components β-sitosterol of Rhei Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Ginseng Radix et Rhizoma Rubra showed good docking with proto-oncogene tyrosine-protein kinase(SRC), signal transducer and activator of transcription 3(STAT3), phosphoinositide-3-kinase catalytic alpha polypeptide gene(PIK3CA), recombinant protein tyrosine phosphatase non receptor type 11(PTPN11), AKT1, epidermal growth factor receptor(EGFR), calcium adhesion-associated protein beta 1(CTNNB1), vascular endothelial growth factor A(VEGFA), and tumor protein p53(TP53). Moreover, sennoside E of Rhei Radix et Rhizoma showed good docking with MAPK1. The results revealed that the ZFXN relieved the neural injury in mice with cerebral hemorrhage, decreased the expression of S100 calcium-binding protein B(S100β), neuron specific enolase(NSE), matrix metalloproteinase 9(MMP9), tumor necrosis factor α(TNF-α), interleukin 1β(IL-1β), SRC, EGFR, CTNNB1, VEGFA, TP53, glial fibrillary acidic protein(GFAP), and leukocyte differentiation antigen 86(CD86), and increased the expression of p-PI3K, p-AKT, and zona occludens 1(ZO-1). The results indicate that ZFXN may inhibit neuronal apoptosis and inflammatory response through PI3K/AKT/p53 pathway to protect the blood-brain barrier, thereby slowing down microcirculatory impairment in cerebral hemorrhage.
Animals
;
Mice
;
Tumor Suppressor Protein p53
;
Proto-Oncogene Proteins c-akt
;
Molecular Docking Simulation
;
Network Pharmacology
;
Vascular Endothelial Growth Factor A
;
Microcirculation
;
Phosphatidylinositol 3-Kinases/genetics*
;
Tumor Necrosis Factor-alpha
;
ErbB Receptors
;
Cerebral Hemorrhage/drug therapy*
;
Neoplasms
;
Phosphatidylinositols
;
Drugs, Chinese Herbal/pharmacology*
4.Glycosylphosphatidylinositol biosynthesis deficiency 15 caused by GPAA1 gene mutation: a rare disease study.
Qiu-Rong CHEN ; Zhen-Jie ZHANG ; Yi-Xiu LU ; Sun-Bi-Xin YUAN ; Ji LI
Chinese Journal of Contemporary Pediatrics 2023;25(12):1276-1281
A boy, aged 6 years, attended the hospital due to global developmental delay for 6 years and recurrent fever and convulsions for 5 years. The boy was found to have delayed mental and motor development at the age of 3 months and experienced recurrent fever and convulsions since the age of 1 year, with intermittent canker sores and purulent tonsillitis. During the fever period, blood tests showed elevated white blood cell count, C-reactive protein, and erythrocyte sedimentation rate, which returned to normal after the fever subsides. Electroencephalography showed epilepsy, and genetic testing showed compound heterozygous mutations in the GPAA1 gene. The boy was finally diagnosed with glycosylphosphatidylinositol biosynthesis deficiency 15 (GPIBD15) and periodic fever. The patient did not respond well to antiepileptic treatment, but showed successful fever control with glucocorticoid therapy. This article reports the first case of GPIBD15 caused by GPAA1 gene mutation in China and summarizes the genetic features, clinical features, diagnosis, and treatment of this disease, which provides a reference for the early diagnosis and treatment of GPIBD15.
Humans
;
Male
;
Fever
;
Glycosylphosphatidylinositols/genetics*
;
Membrane Glycoproteins/genetics*
;
Mutation
;
Rare Diseases
;
Seizures
;
Child
5.Study of magnetic resonance imaging based on liver imaging reporting and data system for evaluating phosphatidylinositol proteoglycan-3 expression in hepatocellular carcinoma.
Wei SUN ; Jiang Tao ZHAO ; Shan Shan GAO ; Jing HAN ; Ruo Fan SHENG ; Mengsu ZENG
Chinese Journal of Hepatology 2022;30(8):866-872
Objective: To clarify the diagnostic value of magnetic resonance imaging based on liver imaging reporting and data system (LI-RADS) for phosphatidylinositol proteoglycan-3 (GPC3) expression in hepatocellular carcinoma (HCC). Methods: Clinical and pathological data of 95 HCC cases with positive GPC3 expression (+) and 40 HCC cases with negative GPC3 expression (-) were retrospectively analyzed, and their MRI image features based on the 2018 version of LI-RADS were compared. Multivariate logistic regression analysis was used to determine the main predictors of GPC3 expression. Receiver operating characteristic curve was used further to determine the diagnostic efficacy of combined clinical imaging model to predict GPC3 expression. Enumeration data were compared with χ2 test or Fisher's exact test. Measurement data were compared using independent samples t-test or Mann-Whitney U-test. Results: There were statistically significant differences between HCC in GPC3 (+) and GPC3(-) group at alpha-fetoprotein (AFP) levels (χ2=31.814, P<0.000 1), and MRI features: capsular enhacement (χ2=4.108, P=0.043), halo type enhancement (χ2=4.847, P=0.028), and lesion apparent dispersion coefficient (ADC) (t=2.552, P=0.011 8). Multivariate regression analysis showed that AFP>20 μg/L (OR=9.358, P<0.000 1) and ADC≤1.404×10-3 mm2/s (OR=1.003, P=0.017) were independent predictors for GPC3 expression in HCC. The combined model and the area under the curve value for the diagnosis of GPC3(+) in HCC was 0.810, and its diagnostic sensitivity and specificity were 76.8% and 77.5%, respectively. Conclusion: AFP>20 μg/L and ADC≤1.404×10-3 mm2/s may indicate the expression of GPC3 in HCC, and the combination of the two diagnostic indicators can provide a simple and effective non-invasive diagnostic method for clinical practice.
Biomarkers, Tumor
;
Carcinoma, Hepatocellular/pathology*
;
Glypicans/metabolism*
;
Humans
;
Liver Neoplasms/pathology*
;
Magnetic Resonance Imaging
;
Phosphatidylinositols
;
Retrospective Studies
;
alpha-Fetoproteins/metabolism*
6.Effect of Electro-acupuncture on Vasomotor Symptoms in Rats with Acute Cerebral Infarction Based on Phosphatidylinositol System.
Jing LI ; Ying HE ; Yuan-Hao DU ; Min ZHANG ; Rainer GEORGI ; Bernhard KOLBERG ; Dong-Wei SUN ; Kun MA ; Yong-Feng LI ; Xue-Zhu ZHANG
Chinese journal of integrative medicine 2022;28(2):145-152
OBJECTIVE:
To investigate the effect of electro-acupuncture (EA) on vasomotor symptoms in rats with acute cerebral infarction, by observing the changes in the expression of factors related to the phosphatidylinositol (PI) system.
METHODS:
Forty-two Wistar rats were randomly divided into 3 groups by a random number table: the control group (n=6), the model group (n=18) and the EA group (n=18). The EA group was given EA treatment at Shuigou (GV 26) instantly after modeling with middle cerebral artery occlusion (MCAO) method, while the model and control groups were not given any treatment. The degrees of neurological deficiency were evaluated using neurological severity scores (NSS) and the brain blood flow was evaluated by a laser scanning confocal microscope. Western blot analysis was conducted to detect the expression levels of G-protein subtype (Gq) and calmodulin (CaM). Competition for protein binding was conducted to detect the expression level of inositol triphosphate (IP3). Thin layer quantitative analysis was conducted to detect the expression level of diacylglycerol (DAG). The expression level of intracellular concentration of free calcium ion ([Ca
RESULTS:
The NSS of the model group was significantly higher than the control group at 3 and 6 h after MCAO (P<0.01), while the EA group was significantly lower than the model group at 6 h (P<0.01). The cerebral blood flow in the model group was significantly lower than the control group at 1, 3 and 6 h after MCAO (P<0.01), while for the EA group it was remarkably higher than the model group at the same time points (P<0.01). The expressions of Gq, CaM, IP3, DAG and [Ca
CONCLUSION
EA treatment at GV 26 can effectively decrease the over-expression of related factors of PI system in rats with acute cerebral infarction, improve cerebral autonomy movement, and alleviate cerebral vascular spasm.
Acupuncture Therapy
;
Animals
;
Brain Ischemia
;
Cerebral Infarction/therapy*
;
Electroacupuncture
;
Phosphatidylinositols
;
Rats
;
Rats, Wistar
7.Onion peel extract and its constituent, quercetin inhibits human Slo3 in a pH and calcium dependent manner
Tharaka Darshana WIJERATHNE ; Ji Hyun KIM ; Min Ji KIM ; Chul Young KIM ; Mee Ree CHAE ; Sung Won LEE ; Kyu Pil LEE
The Korean Journal of Physiology and Pharmacology 2019;23(5):381-392
Sperm function and male fertility are closely related to pH dependent K⁺ current (KSper) in human sperm, which is most likely composed of Slo3 and its auxiliary subunit leucine-rich repeat-containing protein 52 (LRRC52). Onion peel extract (OPE) and its major active ingredient quercetin are widely used as fertility enhancers; however, the effect of OPE and quercetin on Slo3 has not been elucidated. The purpose of this study is to investigate the effect of quercetin on human Slo3 channels. Human Slo3 and LRRC52 were co-transfected into HEK293 cells and pharmacological properties were studied with the whole cell patch clamp technique. We successfully expressed and measured pH sensitive and calcium insensitive Slo3 currents in HEK293 cells. We found that OPE and its key ingredient quercetin inhibit Slo3 currents. Inhibition by quercetin is dose dependent and this degree of inhibition decreases with elevating internal alkalization and internal free calcium concentrations. Functional moieties in the quercetin polyphenolic ring govern the degree of inhibition of Slo3 by quercetin, and the composition of such functional moieties are sensitive to the pH of the medium. These results suggest that quercetin inhibits Slo3 in a pH and calcium dependent manner. Therefore, we surmise that quercetin induced depolarization in spermatozoa may enhance the voltage gated proton channel (Hv1), and activate non-selective cation channels of sperm (CatSper) dependent calcium influx to trigger sperm capacitation and acrosome reaction.
Acrosome Reaction
;
Calcium
;
Fertility
;
HEK293 Cells
;
Humans
;
Hydrogen-Ion Concentration
;
Male
;
Onions
;
Phosphatidylinositols
;
Protons
;
Quercetin
;
Sperm Capacitation
;
Spermatozoa
8.Identification of phospholipase C β downstream effect on transient receptor potential canonical 1/4, transient receptor potential canonical 1/5 channels
Juyeon KO ; Jongyun MYEONG ; Misun KWAK ; Ju Hong JEON ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2019;23(5):357-366
Gα(q)-coupled receptor stimulation was implied in the activation process of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heterotetrameric channels. The inactivation occurs due to phosphatidylinositol 4,5-biphosphate (PI(4,5)P₂) depletion. When PI(4,5)P₂ depletion was induced by muscarinic stimulation or inositol polyphosphate 5-phosphatase (Inp54p), however, the inactivation by muscarinic stimulation was greater compared to that by Inp54p. The aim of this study was to investigate the complete inactivation mechanism of the heteromeric channels upon Gα(q)-phospholipase C β (Gα(q)-PLCβ) activation. We evaluated the activity of heteromeric channels with electrophysiological recording in HEK293 cells expressing TRPC channels. TRPC1/4 and TRPC1/5 heteromers undergo further inhibition in PLCβ activation and calcium/protein kinase C (PKC) signaling. Nevertheless, the key factors differ. For TRPC1/4, the inactivation process was facilitated by Ca²⁺ release from the endoplasmic reticulum, and for TRPC1/5, activation of PKC was concerned mostly. We conclude that the subsequent increase in cytoplasmic Ca²⁺ due to Ca²⁺ release from the endoplasmic reticulum and activation of PKC resulted in a second phase of channel inhibition following PI(4,5)P₂ depletion.
Calcium
;
Cytoplasm
;
Endoplasmic Reticulum
;
GTP-Binding Proteins
;
HEK293 Cells
;
Inositol
;
Phosphatidylinositol 4,5-Diphosphate
;
Phospholipases
;
Phosphotransferases
;
Protein Kinase C
;
Transient Receptor Potential Channels
;
Type C Phospholipases
9.Characterization and Differentiation of Circulating Blood Mesenchymal Stem Cells and the Role of Phosphatidylinositol 3-Kinase in Modulating the Adhesion
Yoon Kyung PARK ; Seong Joo HEO ; Jai Young KOAK ; Gang Seok PARK ; Tae Jun CHO ; Seong Kyun KIM ; Jaejin CHO
International Journal of Stem Cells 2019;12(2):265-278
Bone marrow mesenchymal stem cells (BM MSCs) can differentiate into multi-lineage tissues. However, obtaining BM MSCs by aspiration is difficult and can be painful; therefore peripheral blood (PB) MSCs might provide an easier alternative for clinical applications. Here, we show that circulating PB MSCs proliferate as efficiently as BM MSCs in the presence of extracellular matrix (ECM) and that differentiation potential into osteoblast in vitro and in vivo. Both BM MSCs and PB MSCs developed into new bone when subcutaneously transplanted into immune-compromised mice using hydroxyapatite/tricalcium phosphate as a carrier. Furthermore, LY294002 and Wortmannin blocked mesenchymal stem cell attachment in a dose-dependent manner, suggesting a role of phosphatidylinositol 3-kinase in MSC attachment. Our data showed that the growth of PB MSCs could be regulated by interaction with the ECM and that these cells could differentiate into osteoblasts, suggesting their potential for clinical applications.
Animals
;
Bone Marrow
;
Extracellular Matrix
;
In Vitro Techniques
;
Mesenchymal Stromal Cells
;
Mice
;
Osteoblasts
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositols
10.Induction of Apoptosis Scutellaria baicalensis Georgi Root Extract by Inactivation of the Phosphatidyl Inositol 3-kinase/Akt Signaling Pathway in Human Leukemia U937 Cells
Eun Ok CHOI ; Hye Jin HWANG ; Yung Hyun CHOI
Journal of Cancer Prevention 2019;24(1):11-19
BACKGROUND: The roots of Scutellaria baicalensis Georgi (Labiatae) have been widely used in traditional medicine for treatment of various diseases. In this study, we investigated the effects of ethanol extracts of S. baicalensis roots (EESB) on the growth ofn human leukemia U937 cells. METHODS: The effect of EESB on cell viability was measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Apoptosis was determined using 4,6-diamidino-2-phenyllindile staining and flow cytometry. The effects of EESB on the expression of regulatory proteins of apoptosis and phosphatidyl inositol 3-kinase (PI3K)/Akt signaling were determined by Western blotting. Caspase activity and mitochondrial membrane potential (MMP) were measured using flow cytometric analysis.
Apoptosis
;
Blotting, Western
;
Caspase 8
;
Caspase 9
;
Cell Survival
;
Down-Regulation
;
Ethanol
;
Flow Cytometry
;
Humans
;
Leukemia
;
Ligands
;
Medicine, Traditional
;
Membrane Potential, Mitochondrial
;
Phosphatidylinositols
;
Receptors, Death Domain
;
Scutellaria baicalensis
;
Scutellaria
;
U937 Cells
;
Up-Regulation

Result Analysis
Print
Save
E-mail