1.Influences of dihydromyricetin on proliferation and apoptosis of chondrocytes in osteoarthritis induced by H2O2 through ROS/p38-MAPK signal pathway.
Ying CHENG ; Hui-Juan CHEN ; Ting YANG
China Journal of Orthopaedics and Traumatology 2025;38(4):396-402
OBJECTIVE:
To analyze the influences of dihydromyricetin on the proliferation and apoptosis of chondrocytes in osteoarthritis induced by hydrogen peroxide (H2O2) through reactive oxygen species (ROS)/p38 mitogen activated protein kinase (p38-MAPK) pathway.
METHODS:
Five C57BL/6J mice were euthanized by cervical dislocation after anesthesia. Chondrocytes were extracted and cultured.After passage, the chondrocytes were divided into control group, H2O2 group (0.8 μmol·L-1 H2O2), dihydromyricetin low concentration group (0.8 μmol·L-1 H2O2+20 μmol·L-1 dihydromyricetin), dihydromyricetin high concentration group (0.8 μmol·L-1 H2O2+80 μmol·L-1 dihydromyricetin), and ROS inhibitor N-acetylcysteine (NAC) group (0.8 μmol·L-1 H2O2+5 mmol·L-1 NAC). The activity of chondrocytes was measured by methyl thiazolyl tetrazolium (MTT) assay. The apoptosis rate of chondrocytes was measured by Hoechst 33342 method. The level of ROS in chondrocytes was measured by 2, 7-dichlorofluorescein diacetate (DCFH-DA) fluorescence probe.The level of Type II collagen α1 (Col2α1) mRNA was measured by qRT-PCR.And the expression of Col2α1, p-p38-MAPK/p38-MAPK, B cell lymphoma gene-2 (Bcl-2) and Bcl-2 associated X protein (Bax) proteins was detected by Western blot.
RESULTS:
The chondrocytes showed swirling fibrous mass, and the expression of COL2α was positive. Compared with the control group, the chondrocyte viability, apoptosis rate, ROS fluorescence intensity, p-p38-MAPK/p38-MAPK, and the expression of Bax protein in H2O22 group increased, the level of Col2α1 mRNA, and the expression of Col2α1 and Bcl-2 proteins decreased (P<0.05). Compared with H2O2 group, the chondrocyte viability, apoptosis rate, ROS fluorescence intensity, p-p38-MAPK/p38-MAPK, and the expression of Bax protein in dihydromyricetin low concentration group, dihydromyricetin high concentration group, and NAC group decreased, the level of Col2α1 mRNA, and the expression of Col2α1 and Bcl-2 proteins increased (P<0.05).
CONCLUSION
Dihydromyricetin may inhibit chondrocyte apoptosis, inflammatory reaction and oxidative stress by inhibiting ROS/p38-MAPK pathway. Dihydromyricetin may be a potential drug for treating osteoarthritis.
Animals
;
Chondrocytes/metabolism*
;
Apoptosis/drug effects*
;
Hydrogen Peroxide/toxicity*
;
Osteoarthritis/physiopathology*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Mice
;
Flavonols/pharmacology*
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Cell Proliferation/drug effects*
;
Male
;
Signal Transduction/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Cells, Cultured
2.Effects of p38 phosphorylation on stemness maintenance and chemotherapy drug resistance of PANC-1 cells.
Xueying SHI ; Jinbo YU ; Shihai YANG ; Jin ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):116-124
Objective The aim of this study was to investigate the effect of p38 on stem cell maintenance of pancreatic cancer. Methods Human pancreatic cancer cells PANC-1 were treated with different concentrations of 5-fluorouracil(5-FU)(0.5×IC50, IC50, and 2×IC50) for 24 hours, and VX-702 (p38 phosphorylation inhibitor) was added, and the cells were inoculated in 6-well culture dishes with ultra-low adhesion to observe the changes of sphere tumors. The expression levels of cyclin-dependent kinase 2(CDK2), cyclin B1 and D1, Octamer-binding transcription factor 4(OCT4), SRY-box transcription factor 2(SOX2), Nanog and p38 were measured by Western blot. The mRNA expression levels of p38, OCT4, Nanog and SOX2 were tested by RT-PCR. Cell cycle, apoptosis, and the proportion of CD44+CD133+PANC-1 cells were evaluated by flow cytometry. Results The results showed that 5-FU inhibited the formation of tumor spheres in PANC-1 cells, increased CD44+CD133+cell fragments, down-regulated the expression of OCT4, Nanog and SOX2, and inhibited the stemness maintenance of PANC-1 tumor stem cells. Phosphorylation of PANC-1 cells was inhibited by a highly selective p38 MAPK inhibitor, VX-702(p38 mitogen-activated protein kinase inhibitor), which had the same effect as 5-FU treatment. When VX-702 combined with 5-FU was used to treat PANC-1 cells, the therapeutic effect was enhanced. Conclusion p38 inhibitors decreased PANC-1 cell activity and increased cell apoptosis. p38 inhibitors inhibit the stemness maintenance of pancreatic cancer stem cells.
Humans
;
Phosphorylation/drug effects*
;
Cell Line, Tumor
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors*
;
Neoplastic Stem Cells/metabolism*
;
Drug Resistance, Neoplasm/drug effects*
;
Fluorouracil/pharmacology*
;
Pancreatic Neoplasms/pathology*
;
Apoptosis/drug effects*
;
SOXB1 Transcription Factors/genetics*
;
Octamer Transcription Factor-3/genetics*
3.Tanshinone II A Facilitates Chemosensitivity of Osteosarcoma Cells to Cisplatin via Activation of p38 MAPK Pathway.
Da-Ming XIE ; Zhi-Yun LI ; Bing-Kai REN ; Rui GONG ; Dong YANG ; Sheng HUANG
Chinese journal of integrative medicine 2025;31(4):326-335
OBJECTIVE:
To examine the mechanism of action of tanshinone II A (Tan II A) in promoting chemosensitization of osteosarcoma cells to cisplatin (DDP).
METHODS:
The effects of different concentrations of Tan II A (0-80 µ mol/L) and DDP (0-2 µ mol/L) on the proliferation of osteosarcoma cell lines (U2R, U2OS, 143B, and HOS) at different times were examined using the cell counting kit-8 and colony formation assays. Migration and invasion of U2R and U2OS cells were detected after 24 h treatment with 30 µ mol/L Tan II A, 0.5 µ mol/L DDP alone, and a combination of 10 µ mol/L Tan II A and 0.25 µ mol/L DDP using the transwell assay. After 48 h of treatment of U2R and U2OS cells with predetermined concentrations of each group of drugs, the cell cycle was analyzed using a cell cycle detection kit and flow cytometry. After 48 h treatment, apoptosis of U2R and U2OS cells was detected using annexin V-FITC apoptosis detection kit and flow cytometry. U2R cells were inoculated into the unilateral axilla of nude mice and then the mice were randomly divided into 4 groups of 6 nude mice each. The 4 groups were treated with equal volume of Tan II A (15 mg/kg), DDP (3 mg/kg), Tan II A (7.5 mg/kg) + DDP (1.5 mg/kg), and normal saline, respectively. The body weight of the nude mice was weighed, and the tumor volume and weight were measured. Cell-related gene and signaling pathway expression were detected by RNA sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analysis. p38 MAPK signaling pathway proteins and apoptotic protein expressions were detected by Western blot.
RESULTS:
In vitro studies have shown that Tan II A, DDP and the combination of Tan II A and DDP inhibit the proliferation, migration and invasion of osteosarcoma cells. The inhibitory effect was more pronounced in the Tan II A and DDP combined treatment group (P<0.05 or P<0.01). Osteosarcoma cells underwent significantly cell-cycle arrest and cell apoptosis by Tan II A-DDP combination treatment (P<0.05 or P<0.01). In vivo studies demonstrated that the Tan II A-DD combination treatment group significantly inhibited tumor growth compared to the Tan II A and DDP single drug group (P<0.01). Additionally, we found that the combination of Tan II A and DDP treatment enhanced the p38 MAPK signaling pathway. Western blot assays showed higher p-p38, cleaved caspase-3, and Bax and lower caspase-3, and Bcl-2 expressions with the combination of Tan II A and DDP treatment compared to the single drug treatment (P<0.01).
CONCLUSION
Tan II A synergizes with DDP by activating the p38/MAPK pathway to upregulate cleaved caspase-3 and Bax pro-apoptotic gene expressions, and downregulate caspase-3 and Bcl-2 inhibitory apoptotic gene expressions, thereby enhancing the chemosensitivity of osteosarcoma cells to DDP.
Abietanes/therapeutic use*
;
Osteosarcoma/enzymology*
;
Cisplatin/therapeutic use*
;
Humans
;
Cell Line, Tumor
;
Animals
;
Apoptosis/drug effects*
;
Mice, Nude
;
Cell Proliferation/drug effects*
;
Cell Movement/drug effects*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
MAP Kinase Signaling System/drug effects*
;
Bone Neoplasms/enzymology*
;
Cell Cycle/drug effects*
;
Xenograft Model Antitumor Assays
;
Mice
;
Drug Resistance, Neoplasm/drug effects*
;
Neoplasm Invasiveness
;
Mice, Inbred BALB C
4.Liang-Ge-San Decoction Ameliorates Acute Respiratory Distress Syndrome via Suppressing p38MAPK-NF-κ B Signaling Pathway.
Quan LI ; Juan CHEN ; Meng-Meng WANG ; Li-Ping CAO ; Wei ZHANG ; Zhi-Zhou YANG ; Yi REN ; Jing FENG ; Xiao-Qin HAN ; Shi-Nan NIE ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(7):613-623
OBJECTIVE:
To explore the potential effects and mechanisms of Liang-Ge-San (LGS) for the treatment of acute respiratory distress syndrome (ARDS) through network pharmacology analysis and to verify LGS activity through biological experiments.
METHODS:
The key ingredients of LGS and related targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. ARDS-related targets were selected from GeneCards and DisGeNET databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed using the Metascape Database. Molecular docking analysis was used to confirm the binding affinity of the core compounds with key therapeutic targets. Finally, the effects of LGS on key signaling pathways and biological processes were determined by in vitro and in vivo experiments.
RESULTS:
A total of LGS-related targets and 496 ARDS-related targets were obtained from the databases. Network pharmacological analysis suggested that LGS could treat ARDS based on the following information: LGS ingredients luteolin, wogonin, and baicalein may be potential candidate agents. Mitogen-activated protein kinase 14 (MAPK14), recombinant V-Rel reticuloendotheliosis viral oncogene homolog A (RELA), and tumor necrosis factor alpha (TNF-α) may be potential therapeutic targets. Reactive oxygen species metabolic process and the apoptotic signaling pathway were the main biological processes. The p38MAPK/NF-κ B signaling pathway might be the key signaling pathway activated by LGS against ARDS. Moreover, molecular docking demonstrated that luteolin, wogonin, and baicalein had a good binding affinity with MAPK14, RELA, and TNF α. In vitro experiments, LGS inhibited the expression and entry of p38 and p65 into the nucleation in human bronchial epithelial cells (HBE) cells induced by LPS, inhibited the inflammatory response and oxidative stress response, and inhibited HBE cell apoptosis (P<0.05 or P<0.01). In vivo experiments, LGS improved lung injury caused by ligation and puncture, reduced inflammatory responses, and inhibited the activation of p38MAPK and p65 (P<0.05 or P<0.01).
CONCLUSION
LGS could reduce reactive oxygen species and inflammatory cytokine production by inhibiting p38MAPK/NF-κ B signaling pathway, thus reducing apoptosis and attenuating ARDS.
Drugs, Chinese Herbal/pharmacology*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Animals
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Humans
;
Male
;
Network Pharmacology
;
Apoptosis/drug effects*
;
Mice
5.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
6.Niranthin ameliorates Crohn's disease-like enteritis in mice by inhibiting intestinal epithelial cell apoptosis and protecting intestinal barrier via modulating p38/JNK signaling.
Lu TAO ; Yue CHEN ; Linlin HUANG ; Wang ZHENG ; Xue SONG ; Ping XIANG ; Jianguo HU
Journal of Southern Medical University 2025;45(11):2483-2495
OBJECTIVES:
To investigate the therapeutic effect of the natural compound niranthin on Crohn's disease-like colitis in mice and explore the underlying molecular mechanisms.
METHODS:
In a mouse model of colitis induced by 2,4,6-trinitro-benzenesulfonic acid (TNBS), the therapeutic effect of niranthin was evaluated by observing the changes in body weight, disease activity index (DAI), and colon length of the mice. The levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-17A and IL-10) in the intestinal mucosal tissue were detected using ELISA and quantitative real-time PCR (qRT-PCR). TUNEL staining and Western blotting were used to assess intestinal epithelial cell apoptosis and the expressions of Bcl-2 and Bax. The expression levels of tight junction proteins (ZO-1 and claudin-1) and the activation of the p38/JNK signaling pathway were investigated using Western blotting, and diprovocim intervention experiments were conducted to explore the molecular regulatory mechanism of niranthin.
RESULTS:
Niranthin treatment significantly increased body weight of TNBS-treated mice, lowered the DAI and histological inflammation scores, and increased colon length of the mice. The niranthin-treated mouse models showed obviously reduced protein and mRNA levels of IL-6, IL-1β, IL-17A, and TNF-α and upregulated expression of IL-10 in the colon tissue. TUNEL staining and Western blotting demonstrated that niranthin significantly inhibited intestinal epithelial cell apoptosis and activated the anti-apoptotic pathway in the mouse models. Niranthin treatment obviously upregulated the expression levels of ZO-1 and claudin-1 and downregulated the phosphorylation levels of p38 and JNK in the colon tissues of the mice. Diprovocim intervention obviously attenuated the inactivation of the p38/JNK signaling pathway induced by niranthin in the mouse models.
CONCLUSIONS
Niranthin ameliorates TNBS-induced Crohn's disease-like colitis in mice by inhibiting intestinal epithelial cell apoptosis and protecting the integrity of the intestinal barrier via regulating the activation of the p38/JNK signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Mice
;
Intestinal Mucosa/drug effects*
;
Crohn Disease/drug therapy*
;
MAP Kinase Signaling System/drug effects*
;
Epithelial Cells/drug effects*
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Male
7.Influence of Tongfu Xiefei Guanchang Solution on intestinal barrier and intestinal flora of rats with acute lung injury based on p38 MAPK/MLCK signaling pathway.
Ming MA ; Kun WANG ; Yan-Hua YANG ; Meng-Ru YUE ; Quan-Na REN ; Yu-Han CHEN ; Yong-Zhen SONG ; Zi-Fu XU ; Xu ZHAO
China Journal of Chinese Materia Medica 2024;49(21):5919-5931
The study is designed to observe the mechanism of Tongfu Xiefei Guanchang Solution(TFXF) in the treatment of acute lung injury(ALI) in rats by improving intestinal barrier and intestinal flora structure via p38 mitogen-activated protein kinase(p38 MAPK)/myosin light chain kinase(MLCK) signaling pathway. Sixty SPF-grade Wistar rats were randomly divided into the control(CON) group, lipopolysaccharide(LPS) group(7.5 mg·kg~(-1)), LPS + dexamethasone(DEX) group(3.5 mg·kg~(-1)), LPS + high-dose(HD)-TFXF group(14.74 g·kg~(-1)), LPS + middle-dose(MD)-TFXF group(7.37 g·kg~(-1)), and LPS + low-dose(LD)-TFXF group(3.69 g·kg~(-1)). ALI model of the rat was established by intraperitoneal injection of LPS. The lactate dehydrogenase(LDH) activity and total protein concentration in the bronchoalveolar lavage fluid(BALF) were measured; tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) levels in lung and colon tissue of rats were detected by enzyme linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe the pathological expression in the lung and colon tissue of rats. The mRNA expression of p38 MAPK, TNF-α, and IL-1β in rat lung tissue was determined by real-time fluorescence quantitative polymerase chain reaction(real-time PCR). Western blot was used to detect the protein expression related to the p38 MAPK/MLCK signaling pathway in the colon tissue of rats. 16S rRNA sequencing was used to detect changes in the composition and content of intestinal flora in rats, and correlation analyses were performed to explore the regulatory role of intestinal flora in improving ALI in rats. The results showed that compared with those in the LPS group, the histopathological scores of lung and colon tissue, LDH activity, and total protein concentration in BALF were significantly reduced in rats in all groups after drug administration. Except for the LPS + LD-TFXF group, the remaining groups significantly reduced the levels of TNF-α and IL-1β in the lung and colon tissue of rats. The protein expressions of phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK)/p38, phosphorylated myosin light chain(p-MLC)/myosin light chain 2(MLC2), and MLCK in colon tissue of rats in each drug administration group were significantly decreased. The mRNA expression levels of p38 MAPK, TNF-α, and IL-1β were significantly reduced in the LPS + HD-TFXF group. 16S rRNA sequencing results showed that the abundance of intestinal flora was significantly higher in the LPS + HD-TFXF group, and intestinal floras including Sobs, Shannon, and Npshannon were significantly higher. The β-diversity distribution of intestinal flora tends toward the CON group, and the abundance of Firmicutes was significantly higher. The abundance of Proteobacteria was significantly reduced; the abundance of Bacteroides was significantly reduced, and the abundance of Ruminococcus was significantly higher. The main species differences were Blautia, Roseburia_sp_499, and Butyricicoccus. TNF-α and IL-1β of lung tissue were negatively correlated with Muribaculaceae, unclassified norank_f_Eubacterium_coprostanoligenes, and Ruminococcus and positively correlated with Bacteroides. Meanwhile, TNF-α and IL-1β of colon tissue were negatively correlated with unclassified norank_f_Eubacterium_coprostanoligenes and Ruminococcus and positively correlated with Bacteroides. The predicted biological function of the flora was related to the biosynthesis of secondary metabolites, amino acid biosynthesis, sugar metabolism, and oxidative phosphorylation. The above studies show that TFXF can repair lung and colon tissue structure and regulate inflammatory factor levels by modulating the abundance and diversity of intestinal flora species in ALI rats. Its mechanism of action in ameliorating ALI in rats may be related to the inhibition of inflammation, improvement of intestinal mucosal permeability, and maintenance of intestinal flora homeostasis and barrier through the p38 MAPK/MLCK signaling pathway.
Animals
;
Acute Lung Injury/genetics*
;
Rats
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Myosin-Light-Chain Kinase/genetics*
;
Male
;
Gastrointestinal Microbiome/drug effects*
;
Rats, Wistar
;
Signal Transduction/drug effects*
;
Interleukin-1beta/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Lung/metabolism*
;
Intestinal Mucosa/metabolism*
;
Humans
8.Dahuang Zhechong Pill Alleviates Liver Fibrosis Progression by Regulating p38 MAPK/NF-κ B/TGF-β1 Pathway.
Xiao-Yan HE ; Xiao-Jiao XIONG ; Mei-Jun LIU ; Jing-Tao LIANG ; Fu-You LIU ; Jing-Yi XIAO ; Li-Juan WU
Chinese journal of integrative medicine 2024;30(12):1113-1120
OBJECTIVE:
To explore the effect and mechanism of Dahuang Zhechong Pill (DHZCP) on liver fibrosis.
METHODS:
Liver fibrosis cell model was induced by transforming growth factor-β (TGF-β) in hepatic stellate cells (HSC-T6). DHZCP medicated serum (DMS) was prepared in rats. HSC-T6 cells were divided into the control (15% normal blank serum culture), TGF-β (15% normal blank serum + 5 ng/mL TGF-β), DHZCP (15% DMS + 5 ng/mL TGF-β), DHZCP+PDTC [15% DMS + 4 mmol/L ammonium pyrrolidine dithiocarbamate (PDTC)+ 5 ng/mL TGF-β], and PDTC groups (4 mmol/L PDTC + 5 ng/mL TGF-β). Cell activity was detected by cell counting kit 8 and levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the cell supernatant were determined by enzyme-linked immunosorbnent assay. Western blot was used to measure the expressions of p38 mitogen-activated protein kinase/nuclear factor kappa B/transforming growth factor-β1 (p38 MAPK/NF-κ B/TGF-β1) pathway related proteins, and the localization and expressions of these proteins were observed by immunofluorescence staining.
RESULTS:
DHZCP improves the viability of cells damaged by TGF-β and reduces inflammatory cytokines and ALT and AST levels in the supernatant of HSC-T6 cells induced with TGF-β (P<0.05 or P<0.01). Compared with the TGF-β group, NF-κ B p65 levels in the DHZCP group were decreased (P<0.05). p38 MAPK and NF-κ B p65 levels in the DHZCP+PDTC were also reduced (P<0.01). Compared with the TGF-β group, the protein expression of Smad2 showed a downward trend in the DHZCP, DHZCP+PDTC, and PDTC groups (all P<0.01), and the decreasing trend of Samd3 was statistically significant only in DHZCP+PDTC group (P<0.01), whereas Smad7 was increased (P<0.05 or P<0.01).
CONCLUSION
DHZCP can inhibit the process of HSC-T6 cell fibrosis by down-regulating the expression of p38 MAPK/NF-κ B/TGF-β1 pathway.
Animals
;
Liver Cirrhosis/pathology*
;
Drugs, Chinese Herbal/therapeutic use*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Male
;
Signal Transduction/drug effects*
;
Rats
;
Disease Progression
;
Cell Line
;
Hepatic Stellate Cells/pathology*
;
Rats, Sprague-Dawley
9.Effect of Jinzhen Oral Liquid on cough after lipopolysaccharide-induced infection in rats and mechanism.
Shu-Juan XU ; Hao GUO ; Long JIN ; Zi-Xin LIU ; Gao-Jie XIN ; Yue YOU ; Wei HAO ; Jian-Hua FU ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2022;47(17):4707-4714
This study aims to explore the effect of Jinzhen Oral Liquid(JOL) on cough after infection in rats and the mechanism. To be specific, a total of 60 male SD rats were classified into 6 groups: normal group(equivalent volume of distilled water, ig), model group(equivalent volume of distilled water, ig), Dextromethorphan Hydrobromide Oral Solution group(3.67 mL·kg~(-1), ig), high-, medium-, and low-dose JOL groups(11.34, 5.67, and 2.84 mL·kg~(-1), respectively, ig). Lipopolysaccharide(LPS, nasal drip), smoking, and capsaicin(nebulization) were employed to induce cough after infection in rats except the normal group. Administration began on the 19 th day and lasted 7 days. Capsaicin(nebulization) was used to stimulate cough 1 h after the last administration and the cough frequency and cough incubation period in rats were recorded. The pathological morphology of lung tissue was observed based on hematoxylin-eosin(HE) staining. Immunohistochemistry(IHC) was used to detect the specific expression of transient receptor potential vanilloid 1(Trpv1), nerve growth factor(NGF), tropomyosin receptor kinase A(TrkA), and phosphorylated-p38 mitogen-activated protein kinase(p-p38 MAPK) in lung tissue, Western blot the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and real-time fluorescent quantitative polymerase chain reaction(real-time PCR) the mRNA expression of Trpv1, NGF, and TrkA. The results showed that model group demonstrated significantly high cough frequency, obvious proliferation and inflammatory cell infiltration in lung tissue, significantly enhanced positive protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue and significant increase in the mRNA expression of Trpv1, NGF, and TrkA compared with the normal group. Compared with the model group, JOL can significantly reduce the cough frequency, alleviate the pathological changes of lung tissue, and decrease the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and high-dose and medium-dose JOL can significantly lower the mRNA expression of Trpv1, NGF, and TrkA. This study revealed that JOL can effectively inhibit Trpv1 pathway-related proteins and improve cough after infection. The mechanism is that it reduces the expression of NGF, TrkA, and p-p38 MAPK in lung tissue, thereby decreasing the expression of Trpv1 and cough sensitivity.
Animals
;
Capsaicin/adverse effects*
;
Cough/drug therapy*
;
Dextromethorphan/adverse effects*
;
Eosine Yellowish-(YS)/adverse effects*
;
Hematoxylin
;
Lipopolysaccharides/adverse effects*
;
Male
;
Medicine, Chinese Traditional
;
Nerve Growth Factor/metabolism*
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, trkA/metabolism*
;
TRPV Cation Channels/metabolism*
;
Tropomyosin/metabolism*
;
Water/metabolism*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
10.Effect of Jingfang Granules on carrageenan-induced tail thrombosis in mice based on ERK/p38 MAPK signaling pathway.
Ji-Dong ZHOU ; Hong-Hua LI ; Xiang-Zi LI ; Shi-Rong LI ; Tian-Ye YANG ; Jing-Chun YAO ; Gui-Min ZHANG
China Journal of Chinese Materia Medica 2022;47(8):2195-2199
The present study explored the anti-inflammatory and anti-thrombotic mechanism of Jingfang Granules on tail thrombosis induced by carrageenan in mice. Thirty-two male ICR mice were randomly divided into a control group, a model group, a Jingfang Granules group, and a positive drug(aspirin) group, with eight mice in each group. The thrombosis model was induced by intraperitoneal injection of carrageenan(45 mg·kg~(-1)) combined with low-temperature stimulation, and the mice were treated with drugs for 7 days before modeling. Twenty-four hours after modeling, blood was detected for four blood coagulation indices in each group. The enzyme-linked immunosorbent assay(ELISA) was used to detect the activity of plasma interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and other inflammatory factors. The tails of mice in each group were cut off to observe tail lesions and measure the length of the thrombus. The protein expression and phosphorylation level of extracellular signal-regulated kinase 1/2(ERK1/2) and p38 mitogen-activated protein kinase(p38 MAPK) in spleen tissues were detected by Western blot. The results showed that dark red thrombus appeared in the tails of mice in each group. The length of the black part accounted for about 40% of the total tail in the model group. Additionally, the model group showed prolonged prothrombin time(PT), increased fibrinogen(FIB) content, and shortened activated partial thromboplastin time(APTT). Compared with the model group, the groups with drug intervention displayed shortened black parts in the tail and improved four blood coagulation indices(P<0.05). As revealed by ELISA, the expression levels of TNF-α, IL-1β, and IL-6 in the mouse plasma were significantly up-regulated in the model group, and those in the groups with drug intervention were reduced as compared with the model group(P<0.05). As demonstrated by Western blot, the protein expression and phosphorylation levels of ERK1/2 and p38 MAPK in the spleen tissues were significantly elevated in the model group, while those in the Jingfang Granules group were down-regulated as compared with the model group with a significant difference. Jingfang Granules can inhibit tail thrombosis of mice caused by carrageenan presumedly by inhibiting the activation of ERK1/2 and p38 MAPK signaling pathways.
Animals
;
Carrageenan/adverse effects*
;
Interleukin-6/metabolism*
;
MAP Kinase Signaling System
;
Male
;
Mice
;
Mice, Inbred ICR
;
Signal Transduction
;
Thrombosis/drug therapy*
;
Tumor Necrosis Factor-alpha/metabolism*
;
p38 Mitogen-Activated Protein Kinases/metabolism*

Result Analysis
Print
Save
E-mail