1.Role of p38MAPK signaling pathway in rats with phantom limb pain.
Hui JIANG ; Yongquan CHEN ; Jintao LIU
Journal of Central South University(Medical Sciences) 2018;43(6):589-593
To investigate the role of p38MAPK signal pathway in spinal cord and dorsal root ganglion (DRG) in rats with phantom limb pain and the effects of specific inhibitors.
Methods: Healthy adult male SD rats (n=48) were cut off one side of the sciatic under anesthesia to establish a model of phantom limb pain. In addition, the healthy rats were taken as a sham group (group S, n=24). The animals were scored by observing the action of chewing (0=no chewing, 13=the worst chewing) after the operation and were sacrificed on the following day after the operation. The successful model of phantom limb pain were randomly divided into 2 groups: a phantom limb pain group (group P, n=24) and a phantom limb pain plus inhibitor group (group P+I, n=24). SB203580 was given to the rat at 0.8 mg/kg on every Monday until the rats were sacrificed, the rest of the rats received an equal amount of saline. Eight rats from each group were randomly taken for the determination of levels of P-p38MAPK in spinal cord and DRG before administration and on the 4th, 6th, 8th weekend following the administration, respectively.
Results: In the sham group, no animal developed chewing. Meanwhile, rats in successful model of phantom limb pain group began chewing from the 2nd day after operation with scores at eight to eleven. The chewing scores in the P+I group were reduced after the treatment. Compared with group S, P-p38MAPK levels were elevated in groups of P and P+I (P<0.05 or P<0.01). Compared with group P, P-p38MAPK level was decreased in the group P+I (P<0.05 or P<0.01).
Conclusion: P38MAPK signal pathway involves in the development of phantom limb pain.
Animals
;
Disease Models, Animal
;
Enzyme Inhibitors
;
pharmacology
;
Ganglia, Spinal
;
enzymology
;
Imidazoles
;
pharmacology
;
Male
;
Mastication
;
physiology
;
Phantom Limb
;
enzymology
;
etiology
;
physiopathology
;
Pyridines
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Sciatic Nerve
;
injuries
;
Self Mutilation
;
enzymology
;
physiopathology
;
Signal Transduction
;
Spinal Cord
;
enzymology
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
metabolism
2.β3-adrenoceptor impacts apoptosis in cultured cardiomyocytes via activation of PI3K/Akt and p38MAPK.
Miao-miao MA ; Xiao-li ZHU ; Li WANG ; Xiao-fang HU ; Zhong WANG ; Jin ZHAO ; Yi-tong MA ; Yi-ning YANG ; Bang-dang CHEN ; Fen LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):1-7
β3-adrenoceptor (β3-AR) has been shown to promote myocardial apoptosis. However, the exact physiological role and importance of this receptor in the human myocardium, and its underlying mode of action, have not been fully elucidated. The present study aimed to determine the effects of β3-AR on the promotion of myocardial apoptosis and on norepinephrine (NE) injury. We analyzed NE-induced cardiomyocyte (CM) apoptosis by using a TUNEL and an annexin V/propidium iodide apoptosis assay. Furthermore, we investigated the NE-induced expression of the apoptosis marker genes Akt and p38MAPK, their phosphorylated counterparts p-Akt and p-p38MAPK, caspase-3, Bcl-2, and Bax. In addition, we determined the effect of a 48-h treatment with a β3-AR agonist and antagonist on expression of these marker genes. β3-AR overexpression was found to increase CM apoptosis, accompanied by an increased expression of caspase-3, bax/bcl-2, and p-p38MAPK. In contrast, the β3-blocker reduced apoptosis of CMs and the associated elevated Akt expression. We identified a novel and potent anti-apoptosis mechanism via the PI3K/Akt pathway and a pro-apoptosis pathway mediated by p38MAPK.
Adrenergic Agonists
;
pharmacology
;
Adrenergic Antagonists
;
pharmacology
;
Animals
;
Apoptosis
;
Cells, Cultured
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Adrenergic, beta-3
;
genetics
;
metabolism
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
3.Angiotensin III increases monocyte chemoattractant protein-1 expression in cultured human proximal tubular epithelial cells.
Hyung Wook KIM ; Young Ok KIM ; Sun Ae YOON ; Jeong Sun HAN ; Hyun Bae CHUN ; Young Soo KIM
The Korean Journal of Internal Medicine 2016;31(1):116-124
BACKGROUND/AIMS: We investigated whether angiotensin III (Ang III) is involved in monocyte recruitment through regulation of the chemokine monocyte chemoattractant protein-1 (MCP-1) in cultured human proximal tubular epithelial cells (HK-2 cells). METHODS: We measured MCP-1 levels in HK-2 cells that had been treated with various concentrations of Ang III and Ang II type-1 (AT1) receptor antagonists at various time points. The phosphorylation states of p38, c-Jun N-terminal kinases (JNK), and extracellular-signal-regulated kinases were measured in Ang III-treated cells to explore the mitogen-activated protein kinase (MAPK) pathway. MCP-1 levels in HK-2 cell-conditioned media were measured after pre-treatment with the transcription factor inhibitors curcumin or pyrrolidine dithiocarbamate. RESULTS: Ang III increased MCP-1 protein production in dose- and time-dependent manners in HK-2 cells, which was inhibited by the AT1 receptor blocker losartan. p38 MAPK activity increased significantly in HK-2 cells exposed to Ang III for 30 minutes, and was sustained at higher levels after 60 minutes (p < 0.05). Total phosphorylated JNK protein levels tended to increase 20 minutes after stimulation with Ang III. Pre-treatment with a p38 inhibitor, a JNK inhibitor, or curcumin significantly inhibited Ang III-induced MCP-1 production. CONCLUSIONS: Ang III increases MCP-1 synthesis via stimulation of intracellular p38 and JNK MAPK signaling activity and subsequent activated protein-1 transcriptional activity in HK-2 cells.
Angiotensin II Type 1 Receptor Blockers/pharmacology
;
Angiotensin III/*pharmacology
;
Cell Line
;
Chemokine CCL2/*metabolism
;
Dose-Response Relationship, Drug
;
Epithelial Cells/*drug effects/metabolism
;
Humans
;
JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism
;
Kidney Tubules, Proximal/*drug effects/metabolism
;
Phosphorylation
;
Protein Kinase Inhibitors/pharmacology
;
Signal Transduction/drug effects
;
Time Factors
;
Transcription Factor AP-1/metabolism
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism
4.The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases.
Jing XIE ; Na FU ; Lin-Yi CAI ; Tao GONG ; Guo LI ; Qiang PENG ; Xiao-Xiao CAI
International Journal of Oral Science 2015;7(4):220-231
Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little is known regarding the influence of the signalling from bone. Additionally, the collagenases and stromelysin-1 are involved in cartilage catabolism through mitogen-activated protein kinase (MAPK) signalling, but the role of the gelatinases has not been elucidated. Here, we studied the influence of osteoclastic signals on chondrocytes by characterising the expression of interleukin-1β (IL-1β)-induced gelatinases through MAPK signalling. We found that osteoclast-conditioned media attenuated the gelatinase activity in chondrocytes. However, IL-1β induced increased levels of gelatinase activity in the conditioned media group relative to the mono-cultured chondrocyte group. More specifically, IL-1β restored high levels of gelatinase activity in c-Jun N-terminal kinase inhibitor-pretreated chondrocytes in the conditioned media group and led to lower levels of gelatinase activity in extracellular signal-regulated kinase or p38 inhibitor-pretreated chondrocytes. Gene expression generally correlated with protein expression. Taken together, these results show for the first time that signals from osteoclasts can influence gelatinase activity in chondrocytes. Furthermore, these data show that IL-1β restores gelatinase activity through MAPK inhibitors; this information can help to increase the understanding of the gelatinase modulation in articular cartilage.
3T3 Cells
;
Animals
;
Cartilage, Articular
;
cytology
;
Cell Survival
;
physiology
;
Cells, Cultured
;
Chondrocytes
;
drug effects
;
enzymology
;
Coculture Techniques
;
Culture Media, Conditioned
;
Gelatinases
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
JNK Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
MAP Kinase Signaling System
;
physiology
;
Matrix Metalloproteinase 2
;
drug effects
;
Matrix Metalloproteinase 9
;
drug effects
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
drug effects
;
Monocytes
;
cytology
;
NF-kappa B
;
antagonists & inhibitors
;
Osteoclasts
;
physiology
;
Protease Inhibitors
;
analysis
;
Tissue Inhibitor of Metalloproteinase-1
;
drug effects
;
Tissue Inhibitor of Metalloproteinase-2
;
drug effects
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
5.OMT inhibited TGF-β1-induced cardiac fibroblast proliferation via down-regulating p38MAPK phosphorylation in vitro.
Hai XIAO ; Yi-ni XU ; Hong LUO ; Yan CHEN ; Yan-yan ZHANG ; Ling TAO ; Yan JIANG ; Xiang-chun SHEN
China Journal of Chinese Materia Medica 2015;40(11):2168-2173
OBJECTIVETo investigate the inhibitory effects of OMT on TGF-β1-induced CFBs proliferation, and then explore the mechanism.
METHODThe experiment was randomly divided into 6 groups as following: control group (serum free DMEM), model group (20 μg x L(-1) TGF-β1), OMT low dose group (1.89 x 10(-4) mol x L(-1) + 20 μg x L(-1) TGF-β1), OMT medium dose group (3.78 x 10(-4) mol x L(-1) + 20 μg x L(-1) TGF-β1), OMT high dose group (7.56 x 10(-4) mol x L(-1) + 20 μg x L(-1) TGF-β1), SB203580 group (p38MAPK blocking agent, 1 x 10(-5) mol x L(-1) + 20 μg x L(-1) TGF-β1). Vimentin of CFBs was identified by immunocytochemical methods, α-SMA of myFBs as well. Inhibitory effects of OMT on CFBs proliferation was detected by the MTT assay. Picric acid Sirius red staining was analyzed collagen type I and collagen type III deposition. Western blot was determined the expression of p38MAPK, p-p38MAPK, collagen type I and collagen type III.
RESULTMTT results showed that OMT significantly inhibited CFBs proliferation induced by TGF-β1 (P < 0.01) α-SMA immunocytochemical experiments suggested that OMT could protect against the CFBs proliferation. OMT could significantly decrease the deposition of collagen type I and collagen type III by Western bloting and picric acid Sirius red staining. Western blot results showed that TGF-β1 enhanced p38MAPK phosphorylation, however OMT attenuated the phosphorylation of p38MAPK induced by TGF-β1 (P < 0.01).
CONCLUSIONOMT can inhibit the CFBs proliferation induced by TGF-β1, and its mechanism may be involved in inhibiting p38MAPK phosphorylation.
Alkaloids ; pharmacology ; Animals ; Cell Proliferation ; drug effects ; Collagen ; metabolism ; Down-Regulation ; Female ; Fibroblasts ; drug effects ; Heart ; drug effects ; In Vitro Techniques ; Male ; Phosphorylation ; Quinolizines ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Transforming Growth Factor beta1 ; antagonists & inhibitors ; p38 Mitogen-Activated Protein Kinases ; antagonists & inhibitors ; metabolism
6.TNF-α induces the release of high mobility group protein B1 through p38 mitogen-activated protein kinase pathway in microglia.
Ruike WANG ; Qinqin ZHANG ; Shenghui YANG ; Qulian GUO
Journal of Central South University(Medical Sciences) 2015;40(9):967-972
OBJECTIVE:
To determine the effect of p38 MAPK inhibitor (SB203580) on TNF-α -induced high mobility group protein B1 (HMGB1) expression in microglial cells.
METHODS:
Microglial cells were treated with TNF-α (25 ng/mL, TNF-α group), TNF-α plus SB203580 (10 μmol/L, TNF-α+SB203580 group), SB203580 (SB203580 group) or serum-free medium (control group). After 16 h of incubation, the protein levels of p-p38 MAPK and HMGB1, and mRNA levels of HMGB1 were examined by ELISA, Western Blot and RT-PCR, respectively.
RESULTS:
There was a significant increase in p-p38 MAPK and HMGB1 levels in TNF-α-treated microglia cells (P<0.01). The TNF-α-induced HMGB1 protein and mRNA expression was suppressed by SB203580.
CONCLUSION
TNF-α up-regulates HMGB1 expression in microglial cells through activation of the p38 MAPK pathway.
Blotting, Western
;
HMGB1 Protein
;
metabolism
;
Humans
;
Imidazoles
;
pharmacology
;
MAP Kinase Signaling System
;
Microglia
;
drug effects
;
metabolism
;
Pyridines
;
pharmacology
;
Tumor Necrosis Factor-alpha
;
pharmacology
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
metabolism
7.Expression of KATP in pulmonary artery smooth muscle cells under hypoxia-hypercapnia condition and the relationship with p38 MAPK pathway.
Ying-Chun MA ; ; Lin-Jing HUANG ; Meng-Xiao ZHENG ; Yuan-Yuan WANG ; Lei YING ; Wan-Tie WANG
Acta Physiologica Sinica 2014;66(3):283-288
The aim of the present study is to investigate the expressions of ATP-sensitive K(+) channels (KATP) in pulmonary artery smooth muscle cells (PASMCs) and the relationship with p38 MAPK signal pathway in rats. Male SD rat PASMCs were cultured in vitro, and a model of hypoxia and hypercapnia was reconstructed. PASMCs were divided to normal (N), hypoxia-hypercapnia (H), hypoxia-hypercapnia+DMSO incubation (HD), hypoxia-hypercapnia+SB203580 (inhibitor of p38 MAPK pathway) incubation (HS) and hypoxia-hypercapnia+Anisomycin (agonist of p38 MAPK pathway) incubation (HA) groups. Western blot was used to detect the protein expression of SUR2B and Kir6.1; semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of SUR2B and Kir6.1. The results demonstrated that: (1) Compared with N, H, HD and HS groups, the expressions of Kir6.1 mRNA and protein in PASMCs of HA group were decreased significantly (P < 0.01), but there were no differences among N, H, HD and HS groups (P > 0.05); (2) Compared with N group, the expressions of SUR2B mRNA and protein in H, HD, HS and HA groups were increased significantly (P < 0.05), but there were no differences among H, HD, HS and HA groups (P > 0.05). The results imply that: (1) Hypoxia-hypercapnia, SB203580 didn't change the expressions of Kir6.1 mRNA and protein in PASMCs, but Anisomycin decreased the expressions of Kir6.1 mRNA and protein, so Kir6.1 may be regulated by the other subfamily of MAPK pathway; (2) Hypoxia-hypercapnia raised SUR2B mRNA and protein expressions in PASMCs, but SB203580 and Anisomycin did not affect the changes, so the increasing of SUR2B mRNA and protein induced by hypoxia-hypercapnia may be not depend on p38 MAPK pathway.
Animals
;
Anisomycin
;
pharmacology
;
Cell Hypoxia
;
Cells, Cultured
;
Hypercapnia
;
Imidazoles
;
pharmacology
;
KATP Channels
;
metabolism
;
MAP Kinase Signaling System
;
Male
;
Myocytes, Smooth Muscle
;
metabolism
;
Pulmonary Artery
;
cytology
;
Pyridines
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Sulfonylurea Receptors
;
metabolism
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
8.Effects and mechanisms of huangkui capsule ameliorating renal fibrosis in diabetic nephropathy rats via inhibiting oxidative stress and p38MAPK signaling pathway activity in kidney.
Zhi-min MAO ; Yi-gang WAN ; Wei SUN ; Hao-li CHEN ; Yan-ru HUANG ; Xi-miao SHI ; Jian YAO
China Journal of Chinese Materia Medica 2014;39(21):4110-4117
OBJECTIVETo demonstrate the effects and mechanisms of Huangkui capsule (HKC) on renal fibrosis in rats with diabetic nephropathy (DN).
METHODRats were randomly divided into 5 groups, the sham-operated group (Sham group, n = 5), the vehicle-given group (Vehicle group, n = 7), the low dose of HKC-treated group (L-HKC group, n = 7), the high dose of HKC-treated group (H-HKC group, n = 7) and the lipoic acid (LA)-treated group (LA group, n = 7). DN models were induced by intraperitoneal injection of streptozotocin (STZ,35 mg x kg(-1)) twice and unilateral nephrectomy. After models were successfully established, the rats in HKC and LA groups were daily administrated with HKC suspensions (0.75, 2 g x kg(-1)) or LA suspensions (60 mg x kg(-1)) respectively, and at the same time, the rats in Vehicle group were daily administrated with distilled water (2 mL) for 8 weeks. All rats were sacrificed at the end of week 8 to collect blood and renal tissues. UAlb, renal function, renal fibrotic morphologic characteristics, as well as oxidative stress (OS)-related markers, the protein expressions of the key signaling molecules in p38 mitogen-activated protein kinase (p38MAPK) signaling pathway, fibrogenic cytokines and inflammatory factors were examined respectively.
RESULTHKC, similar to LA, improved the general state of health, body weight, UAlb, BUN, UA and Alb in DN model rats. Of note, renal fibrosis was ameliorated in HKC groups,especially in H-HKC group which was better than that in LA group. In addition, HKC not only improved the main indexes of OS in the kidney like LA, but also down-regulated the protein expressions of phosphorylated-p38MAPK (p-p38MAPK), transforming growth factor (TGF)-β1 and tumor necrosis factor(TNF)-α in the kidney, whereas, LA only decreased the protein expression of TNF-α in the kidney in DN model rats.
CONCLUSIONHKC, similar to LA, has the actions of anti-OS in vivo. Moreover, HKC could attenuate renal fibrosis by suppressing the activation of p38MAPK signaling pathway and the protein expressions of fibrogenic cytokines and inflammatory factors in the kidney in DN model rats, which is different from LA.
Abelmoschus ; chemistry ; Animals ; Capsules ; Diabetic Nephropathies ; drug therapy ; metabolism ; pathology ; Drugs, Chinese Herbal ; pharmacology ; Fibrosis ; Kidney ; drug effects ; pathology ; MAP Kinase Signaling System ; drug effects ; Male ; Oxidative Stress ; drug effects ; Rats ; Rats, Sprague-Dawley ; p38 Mitogen-Activated Protein Kinases ; antagonists & inhibitors
9.The effect of 5-aminoimidazole-4-carboxamide-ribonucleoside was mediated by p38 mitogen activated protein kinase signaling pathway in FRO thyroid cancer cells.
Won Gu KIM ; Hyun Jeung CHOI ; Tae Yong KIM ; Young Kee SHONG ; Won Bae KIM
The Korean Journal of Internal Medicine 2014;29(4):474-481
BACKGROUND/AIMS: 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that monitors intracellular AMP/adenosine triphosphate (ATP) ratios and is a key regulator of the proliferation and survival of diverse malignant cell types. In the present study, we investigated the effect of activating AMPK by 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR) in thyroid cancer cells. METHODS: We used FRO thyroid cancer cells harboring the BRAF(V600E) mutation to examine the effect of AICAR on cell proliferation and cell survival. We also evaluated the involvement of mitogen-activated protein kinase (MAPK) pathways in this effect. RESULTS: We found that AICAR treatment promoted AMPK activation and suppressed cell proliferation and survival by inducing p21 accumulation and activating caspase-3. AICAR significantly induced activation of p38 MAPK, and pretreatment with SB203580, a specific inhibitor of the p38 MAPK pathway, partially but significantly rescued cell survival. Furthermore, small interfering RNA targeting AMPK-alpha1 abolished AICAR-induced activation of p38 MAPK, p21 accumulation, and activation of caspase-3. CONCLUSIONS: Our findings demonstrate that AMPK activation using AICAR inhibited cell proliferation and survival by activating p38 MAPK and proapoptotic molecules in FRO thyroid cancer cells. These results suggest that the AMPK and p38 MAPK signaling pathways may be useful therapeutic targets to treat thyroid cancer.
AMP-Activated Protein Kinases/genetics/metabolism
;
Aminoimidazole Carboxamide/*analogs & derivatives/pharmacology
;
Antineoplastic Agents/*pharmacology
;
Caspase 3/metabolism
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Cell Survival/drug effects
;
Cyclin-Dependent Kinase Inhibitor p21/metabolism
;
Dose-Response Relationship, Drug
;
Enzyme Activation
;
Enzyme Activators/pharmacology
;
Humans
;
Mutation
;
Protein Kinase Inhibitors/pharmacology
;
Proto-Oncogene Proteins B-raf/genetics
;
RNA Interference
;
Ribonucleotides/*pharmacology
;
Signal Transduction/*drug effects
;
Thyroid Neoplasms/*enzymology/genetics/pathology
;
Time Factors
;
Transfection
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/*metabolism
10.Effects of niacin on cell adhesion and early atherogenesis: involvement of the p38 mitogen-activated protein kinases pathway.
Na NIU ; Bo HAN ; Shu-zhen SUN ; Yong-hui YU ; Yi WANG ; Li-jun WANG
Chinese Journal of Pediatrics 2013;51(11):825-830
OBJECTIVETo examine the effects of niacin on lysophosphatidylcholine (LPC)-induced intercellular adhesion molecule-1 (ICAM-1), and gained insight to the mechanisms.
METHODHuman umbilical vein endothelial cell line was cultured using Medium 200 medium in incubator at 37 °C and 5% CO2 condition.Experimental groups:(1) the negative control group:medium; (2) LPC different time groups:the medium added with 20 µmol/L final concentration of LPC, were cultured for 10 min and 8 h, 24 h; (3) LPC+ p38-mitogen-activated protein kinase (p38MAPK) inhibitor (SB203580) group:the medium added with 10 µmol/L p38MAPK inhibitor (SB203580) was cultured for 1 h, then human umbilical vein endothelial cells (HUVECs) added with the LPC were cultured for 10 min, 8 h and 24 h.(4) LPC+different niacin dose group:after separately adding with 0.25, 0.5, 1 mmol/L niacin, the cells were cultured for 18 h, then HUVECs added with the LPC were cultured for 10 min, 8 h and 24 h. Cell concentration in each group was 5×10(5)/ml, inoculated in 6-well plates, each well 1 ml. Detected by Western blot analysis of pp38MAPK, ICAM-1 protein content, real-time quantitative PCR to detect endothelial cell ICAM-1 mRNA expression, cell immunofluorescence to detect LPC-induced ICAM-1 protein expression.
RESULTIn LPC 24 h group, the expression of ICAM-1 protein was significantly increased 0.786 ± 0.02, the LPC+niacin group, ICAM-1 protein levels (0.487 ± 0.015) was significantly lower than the LPC 24 h group (P < 0.01), in LPC+SB203580 intervention group, ICAM-1 protein levels (0.461 ± 0.011) was significantly lower than that of the LPC 24 h group (P < 0.01), but did not reach the level of the control group. Adding LPC to culture for 10 min, phosphorylation of p38MAPK (pp38MAPK) reached its peak (0.47 ± 0.02), niacin could reduce the pp38MAPK (0.07 ± 0.02), SB203580 could also reduce its activity (0.11 ± 0.02). Adding LPC to culture for 8 h, ICAM-1 mRNA expression (8.16 ± 0.15) compared with the control group (1.00 ± 0.02) had a significant increase (t = 24.34, P < 0.01). Compared with the LPC 8 h, niacin reduced LPC-induced ICAM-1 mRNA expression (3.85 ± 0.14), and showed a dose-dependent manner (F = 8.06, P < 0.01), while SB203580 could not effectively reduce the ICAM-1 mRNA (8.09 ± 0.11).
CONCLUSIONNiacin prevented LPC-induced endothelial dysfunction by reducing expression of ICAM-1. These mechanisms appeared to be at least partly mediated by suppression of the pp38MAPK in endothelial cells. These pleiotropic effects of niacin may potentially contribute to the beneficial effects of risk reduction for atherosclerotic disease.
Atherosclerosis ; metabolism ; prevention & control ; Cell Adhesion ; drug effects ; Cells, Cultured ; Enzyme Inhibitors ; administration & dosage ; pharmacology ; Gene Expression Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; drug effects ; metabolism ; Humans ; Imidazoles ; administration & dosage ; pharmacology ; Intercellular Adhesion Molecule-1 ; genetics ; metabolism ; Lysophosphatidylcholines ; administration & dosage ; pharmacology ; Niacin ; administration & dosage ; pharmacology ; Pyridines ; administration & dosage ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Real-Time Polymerase Chain Reaction ; Signal Transduction ; p38 Mitogen-Activated Protein Kinases ; antagonists & inhibitors ; metabolism

Result Analysis
Print
Save
E-mail