1.The research on the mechanism of GBP2 promoting the progression of silicosis by inducing macrophage polarization and epithelial cell transformation.
Maoqian CHEN ; Jing WU ; Xuan LI ; Jiawei ZHOU ; Yafeng LIU ; Jianqiang GUO ; Anqi CHENG ; Dong HU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):611-619
Objective This study aims to investigate the expression, phenotypic changes, and mechanisms of action of guanylate-binding protein 2 (GBP2) in the process of silica-induced pulmonary fibrosis. Methods The expression and localization of GBP2 in silicotic lung tissue were detected by immunohistochemical staining and immunofluorescence. An in vitro cell model was constructed, and methods such as Western blot and real-time quantitative reverse transcription polymerasechain reaction were utilized to investigate the function of GBP2 in different cell lines following silica stimulation. The mechanism of action of GBP2 in various cell lines was elucidated using Western blot analysis. Results GBP2 was highly expressed in the lung tissue of patients with silicosis. Immunohistochemical staining and immunofluorescence have revealed that GBP2 was localized in macrophages and epithelial cells. In vitro cell experiments demonstrated that silicon dioxide stimulated THP-1 cells to activate the c-Jun pathway through GBP2, promoting the secretion of inflammatory factors and facilitating the occurrence of M2 macrophage polarization. In epithelial cells, GBP2 promoted the occurrence of epithelial to mesenchymal transition (EMT) by upregulating Krueppel-like factor 8 (KLF8). Conclusion GBP2 not only activates c-Jun in macrophages to promote the production of inflammatory factors and the occurrence of M2 macrophage polarization, but also activates the transcription factor KLF8 in epithelial cells to induce EMT, collectively promoting the progression of silicosis.
Humans
;
Silicosis/genetics*
;
Macrophages/cytology*
;
Epithelial Cells/pathology*
;
GTP-Binding Proteins/physiology*
;
Epithelial-Mesenchymal Transition
;
Disease Progression
;
Cell Line
;
Male
2.Influences of radiographic silicosis and drug supervisor on the development of multi drug resistant-tuberculosis in West Java, Indonesia.
Leli Hesti INDRIYATI ; Masamitsu EITOKU ; Naw Awn J-P ; Miki NISHIMORI ; Norihiko HAMADA ; Neni SAWITRI ; Narufumi SUGANUMA
Environmental Health and Preventive Medicine 2025;30():20-20
BACKGROUND:
Indonesia is among countries with a high incidence of multi drug-resistant tuberculosis (MDR-TB) globally. In this study, we aim to determine the prevalence of silico-tuberculosis among TB patients and to investigate the association of radiographic silicosis and the role of drug supervisor as well as other socio-clinical factors, in the development of MDR-TB in Indonesia.
METHODS:
A hospital-based study in West Java among 148 MDR-TB patients (case) and 164 drug-sensitive/DS-TB patients (control) was conducted. Chest x-rays were evaluated by two radiologists and one NIOSH B reader according to the ILO Classification. Face-to-face interviews were conducted using structured questionnaires to collect patients' information, including the task of drug supervisor.
RESULTS:
Findings indicate that supportive drug supervisor reduces the risk of developing MDR-TB, but silicosis showed no significant association. Nevertheless, in this study we found that 17 cases (5.4%) had silico-tuberculosis mostly exhibited as ILO profusion 3; predominated by q shape, 52.9% with large opacities and dominated by size A. Other factors significantly associated with the risk of developing MDR-TB were marital status, low income, longer traveling time to hospital, unsuccessful previous treatment and suffering drug side effects.
CONCLUSION
This study reveals that one of preventive healthcare strategy to protect TB patients from developing MDR-TB is supportive drug supervisor. While, the development of MDR-TB was not significantly influenced by silicosis; however, there is a notable prevalence of silicosis as determined by chest radiography, highlighting the critical need for dust control, occupational hygiene, and health screening for high-risk populations.
Indonesia/epidemiology*
;
Humans
;
Silicosis/diagnostic imaging*
;
Male
;
Tuberculosis, Multidrug-Resistant/etiology*
;
Middle Aged
;
Adult
;
Female
;
Prevalence
;
Risk Factors
;
Aged
;
Antitubercular Agents/therapeutic use*
3.Transport Personnel Health Cohort (TRAPHEAC): study protocol and methodological considerations.
Irina GUSEVA CANU ; Viviane Fiona Mathilde REMY
Environmental Health and Preventive Medicine 2025;30():57-57
BACKGROUND:
Only prospective cohort studies can capture changes in work conditions and their effects on health. Such studies are rare in bus drivers, despite their high rates of injuries and diseases. The three existing cohorts have limited exposure data, collected at baseline and thus uninformative on exposure and exposure-effect dynamics. Therefore, we aimed to develop the Swiss Transport Personnel Health Cohort (TRAPHEAC) and to anticipate and prevent potential bias.
METHODS:
To set up the study protocol, we first organized the stakeholder consultation and available data inventory. Second, we mapped the exposure-outcomes pairs to list the most prevalent occupational hazards, and conducted exposure measurement campaigns. Third, we built the Swiss Bus-Exposure Matrix for physical-chemical hazards and Bus-Ergonomics Matrix for visual and biomechanical constrains. These matrices contain 705 bus models operated in Switzerland since 1980 and enable assessing current and past exposure when merged with bus drivers' work histories.
RESULTS:
We opted for an original study design combining prospective cohort part starting at 2024 and a retrospective part with nested case-control studies. Bus drivers will be invited through three complementary channels: unions, companies, and social media. The eligibility screening, information, and consent form signature and registration will be conducted using the study web-site modules. Registered bus drivers will first receive a comprehensive inclusion questionnaire, then a yearly follow-up questionnaire to assess and update the drivers' work histories. Validated self-reported questionnaires will be used for assessing additional health outcomes (e.g., stress, sleep problems, musculoskeletal disorders, burnout) and individual, occupational and live-style related factors (e.g., personality, ICT use, physical activity). Hospital records (with diagnosed diseases, diagnosis dates and treatments) centralized since 2000 by the Swiss Federal Statics Office will be used for assessing disease prevalence, incidence and case-control status. Advanced statistical analysis will be conducted to address etiological and methodological questions (e.g., individual and joint causal effects of multiple exposures and exposure components; time-varying exposure and outcome variables and confounders mixtures).
CONCLUSIONS
The yearly assessment of both exposure and health outcomes should enable capturing changes in work conditions and their effects on bus drivers' health and well-being over time and facilitate the tailoring, implementation and evaluation of preventive interventions.
Humans
;
Switzerland/epidemiology*
;
Prospective Studies
;
Occupational Exposure/statistics & numerical data*
;
Occupational Diseases/epidemiology*
;
Cohort Studies
;
Motor Vehicles
;
Research Design
;
Retrospective Studies
;
Case-Control Studies
;
Occupational Health
;
Adult
;
Male
;
Female
4.Cannabidiol regulates circadian rhythm to improve sleep disorders following general anesthesia in rats.
Xinshun WU ; Jingcao LI ; Ying LIU ; Renhong QIU ; Henglin WANG ; Rui XYE ; Yang ZHANG ; Shuo LI ; Qiongyin FAN ; Huajin DONG ; Youzhi ZHANG ; Jiangbei CAO
Journal of Southern Medical University 2025;45(4):744-750
OBJECTIVES:
To assess the regulatory effect of cannabidiol (CBD) on circadian rhythm sleep disorders following general anesthesia and explore its potential mechanism in a rat model of propofol-induced rhythm sleep disorder.
METHODS:
An electrode was embedded in the skull for cortical EEG recording in 24 male SD rats, which were randomized into control, propofol, CBD treatment, and diazepam treatment groups (n=6). Eight days later, a single dose of propofol (10 mg/kg) was injected via the tail vein with anesthesia maintenance for 3 h in the latter 3 groups, and daily treatment with saline, CBD or diazepam was administered via gavage; the control rats received only saline injection. A wireless system was used for collecting EEG, EMG, and body temperature data within 72 h after propofol injection. After data collection, blood samples and hypothalamic tissue samples were collected for determining serum levels of oxidative stress markers and hypothalamic expressions of the key clock proteins.
RESULTS:
Compared with the control rats, the rats with CBD treatment showed significantly increased sleep time at night (20:00-6:00), especially during the time period of 4:00-6:00 am. Compared with the rats in propofol group, which had prolonged SWS time and increased sleep episodes during 18:00-24:00 and sleep-wake transitions, the CBD-treated rats exhibited a significant reduction of SWS time and fewer SWS-to-active-awake transitions with increased SWS aspects and sleep-wake transitions at night (24:00-08:00). Diazepam treatment produced similar effect to CBD but with a weaker effect on sleep-wake transitions. Propofol caused significant changes in protein expressions and redox state, which were effectively reversed by CBD treatment.
CONCLUSIONS
CBD can improve sleep structure and circadian rhythm in rats with propofol-induced sleep disorder possibly by regulating hypothalamic expressions of the key circadian clock proteins, suggesting a new treatment option for perioperative sleep disorders.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Cannabidiol/therapeutic use*
;
Rats
;
Circadian Rhythm/drug effects*
;
Propofol/adverse effects*
;
Anesthesia, General/adverse effects*
;
Sleep Wake Disorders/chemically induced*
;
Hypothalamus/metabolism*
;
Electroencephalography
5.Anterior Cingulate Cortex Contributes to the Hyperlocomotion under Nitrogen Narcosis.
Bin PENG ; Xiao-Bo WU ; Zhi-Jun ZHANG ; De-Li CAO ; Lin-Xia ZHAO ; Hao WU ; Yong-Jing GAO
Neuroscience Bulletin 2025;41(5):775-789
Nitrogen narcosis is a neurological syndrome that manifests when humans or animals encounter hyperbaric nitrogen, resulting in a range of motor, emotional, and cognitive abnormalities. The anterior cingulate cortex (ACC) is known for its significant involvement in regulating motivation, cognition, and action. However, its specific contribution to nitrogen narcosis-induced hyperlocomotion and the underlying mechanisms remain poorly understood. Here we report that exposure to hyperbaric nitrogen notably increased the locomotor activity of mice in a pressure-dependent manner. Concurrently, this exposure induced heightened activation among neurons in both the ACC and dorsal medial striatum (DMS). Notably, chemogenetic inhibition of ACC neurons effectively suppressed hyperlocomotion. Conversely, chemogenetic excitation lowered the hyperbaric pressure threshold required to induce hyperlocomotion. Moreover, both chemogenetic inhibition and genetic ablation of activity-dependent neurons within the ACC reduced the hyperlocomotion. Further investigation revealed that ACC neurons project to the DMS, and chemogenetic inhibition of ACC-DMS projections resulted in a reduction in hyperlocomotion. Finally, nitrogen narcosis led to an increase in local field potentials in the theta frequency band and a decrease in the alpha frequency band in both the ACC and DMS. These results collectively suggest that excitatory neurons within the ACC, along with their projections to the DMS, play a pivotal role in regulating the hyperlocomotion induced by exposure to hyperbaric nitrogen.
Animals
;
Gyrus Cinguli/drug effects*
;
Male
;
Mice, Inbred C57BL
;
Locomotion/drug effects*
;
Neurons/drug effects*
;
Mice
;
Nitrogen/toxicity*
;
Inert Gas Narcosis/physiopathology*
;
Corpus Striatum/physiopathology*
6.Antibiotic-Depleted Lung Microbiota Modulates Surfactant Proteins Expression and Reduces Experimental Silicosis.
Qiang ZHOU ; Mei Yu CHANG ; Ning LI ; Yi GUAN ; San Qiao YAO
Biomedical and Environmental Sciences 2025;38(4):469-483
OBJECTIVE:
Recent studies have overturned the traditional concept of the lung as a "sterile organ" revealing that pulmonary microbiota dysbiosis and abnormal surfactant proteins (SPs) expression are involved in the progression of silicosis. This study aimed to investigate the relationship between abnormal SPs expression and dysbiosis of lung microbiota in silica-induced lung fibrosis, providing insights into mechanisms of silicosis.
METHODS:
Lung pathology, SPs expression, and microbiota composition were evaluated in silica-exposed mice. A mouse model of antibiotic-induced microbiota depletion was established, and alveolar structure and SPs expression were assessed. The roles of the lung microbiota and SPs in silicosis progression were further evaluated in mice with antibiotic-induced microbiota depletion, both with and without silica exposure.
RESULTS:
Silica exposure induced lung inflammation and fibrosis, along with increased expression of SP-A expression. Antibiotics (Abx)-induced microbiota depletion elevated SP-A and SP-D expression. Furthermore, silica exposure altered lung microbiota composition, enriching potentially pathogenic taxa. However, antibiotic-induced microbiota depletion prior to silica exposure reduced silica-mediated lung fibrosis and inflammation.
CONCLUSION
Lung microbiota is associated with silica-induced lung injury. Overproduction of SP-A and SP-D, induced by Abx-induced microbiota depletion, may enhance the resistance of mouse lung tissue to silica-induced injury.
Animals
;
Silicosis/prevention & control*
;
Lung/metabolism*
;
Mice
;
Anti-Bacterial Agents/pharmacology*
;
Microbiota/drug effects*
;
Silicon Dioxide/toxicity*
;
Mice, Inbred C57BL
;
Male
;
Pulmonary Surfactant-Associated Proteins/genetics*
7.Deciphering the Role of VIM, STX8, and MIF in Pneumoconiosis Susceptibility: A Mendelian Randomization Analysis of the Lung-Gut Axis and Multi-Omics Insights from European and East Asian Populations.
Chen Wei ZHANG ; Bin Bin WAN ; Yu Kai ZHANG ; Tao XIONG ; Yi Shan LI ; Xue Sen SU ; Gang LIU ; Yang Yang WEI ; Yuan Yuan SUN ; Jing Fen ZHANG ; Xiao YU ; Yi Wei SHI
Biomedical and Environmental Sciences 2025;38(10):1270-1286
OBJECTIVE:
Pneumoconiosis, a lung disease caused by irreversible fibrosis, represents a significant public health burden. This study investigates the causal relationships between gut microbiota, gene methylation, gene expression, protein levels, and pneumoconiosis using a multi-omics approach and Mendelian randomization (MR).
METHODS:
We analyzed gut microbiota data from MiBioGen and Esteban et al. to assess their potential causal effects on pneumoconiosis subtypes (asbestosis, silicosis, and inorganic pneumoconiosis) using conventional and summary-data-based MR (SMR). Gene methylation and expression data from Genotype-Tissue Expression and eQTLGen, along with protein level data from deCODE and UK Biobank Pharma Proteomics Project, were examined in relation to pneumoconiosis data from FinnGen. To validate our findings, we assessed self-measured gut flora from a pneumoconiosis cohort and performed fine mapping, drug prediction, molecular docking, and Phenome-Wide Association Studies to explore relevant phenotypes of key genes.
RESULTS:
Three core gut microorganisms were identified: Romboutsia ( OR = 0.249) as a protective factor against silicosis, Pasteurellaceae ( OR = 3.207) and Haemophilus parainfluenzae ( OR = 2.343) as risk factors for inorganic pneumoconiosis. Additionally, mapping and quantitative trait loci analyses revealed that the genes VIM, STX8, and MIF were significantly associated with pneumoconiosis risk.
CONCLUSIONS
This multi-omics study highlights the associations between gut microbiota and key genes ( VIM, STX8, MIF) with pneumoconiosis, offering insights into potential therapeutic targets and personalized treatment strategies.
Humans
;
Male
;
East Asian People/genetics*
;
Europe
;
Gastrointestinal Microbiome
;
Lung
;
Macrophage Migration-Inhibitory Factors/metabolism*
;
Mendelian Randomization Analysis
;
Multiomics
;
Pneumoconiosis/microbiology*
;
Intramolecular Oxidoreductases
8.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
10.Role of PI3K/Akt/mTOR pathway-mediated macrophage autophagy in affecting the phenotype transformation of lung fibroblasts induced by silica dust exposure.
Yue DU ; Fangcai HUANG ; Lan GUAN ; Ming ZENG
Journal of Central South University(Medical Sciences) 2023;48(8):1152-1162
OBJECTIVES:
The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the main signaling pathways related to autophagy. Autophagy plays a key role in the formation of silicosis fibrosis. The phenotypic transformation of lung fibroblasts into myofibroblasts is a hallmark of the transition from the inflammatory phase to the fibrotic phase in silicosis. This study aims to investigate whether the PI3K/Akt/mTOR pathway affects the phenotypic transformation of silicosis-induced lung fibroblasts into myofibroblasts via mediating macrophage autophagy.
METHODS:
The human monocytic leukemia cell line THP-1 cells were differentiated into macrophages by treating with 100 ng/mL of phorbol ester for 24 h. Macrophages were exposed to different concentrations (0, 25, 50, 100, 200, 400 μg/mL) and different times (0, 6, 12, 24, 48 h) of SiO2 dust suspension. The survival rate of macrophages was measured by cell counting kit-8 (CCK-8) method. Enzyme linked immunosorbent assay (ELISA) was used to measure the contents of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) in the cell supernatant. The co-culture system of macrophages and HFL-1 cells was established by transwell. A blank control group, a SiO2 group, a LY294002 group, a SC79 group, a LY294002+SiO2 group, and a SC79+SiO2 group were set up in this experiment. Macrophages in the LY294002+SiO2 group were pretreated with LY294002 (PI3K inhibitor) for 18 hours, and macrophages in the SC79+SiO2 group were pretreated with SC79 (Akt activator) for 24 hours, and then exposed to SiO2 (100 μg/mL) dust suspension for 12 hours. The expression of microtubule-associated protein 1 light chain 3 (LC3) protein in macrophages was detected by the immunofluorescence method. The protein expressions of PI3K, Akt, mTOR, Beclin-1, LC3 in macrophages, and collagen III (Col III), α-smooth muscle actin (α-SMA), fibronectin (FN), matrix metalloproteinase-1 (MMP-1), tissue metalloproteinase inhibitor-1 (TIMP-1) in HFL-1 cells were measured by Western blotting.
RESULTS:
After the macrophages were exposed to SiO2 dust suspension of different concentrations for 12 h, the survival rates of macrophages were gradually decreased with the increase of SiO2 concentration. Compared with the 0 μg/mL group, the survival rates of macrophages in the 100, 200, and 400 μg/mL groups were significantly decreased, and the concentrations of TGF-β1 and TNF-α in the cell supernatant were obviously increased (all P<0.05). When 100 μg/mL SiO2 dust suspension was applied to macrophages, the survival rates of macrophages were decreased with the prolonged exposure time. Compared with the 0 h group, the survival rates of macrophages were significantly decreased (all P<0.05), the concentrations of TGF-β1 and TNF-α in the cell supernatant were significantly increased, and the protein expression levels of Beclin-1 and LC3II were increased markedly in the 6, 12, 24, and 48 h groups (all P<0.05). Immunofluorescence results demonstrated that after exposure to SiO2 (100 μg/mL) dust for 12 h, LC3 exhibited punctate aggregation and significantly higher fluorescence intensity compared to the blank control group (P<0.05). Compared with the blank control group, the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated in the SiO2 group (all P<0.05). Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were down-regulated and the protein expressions of LC3II and Beclin-1 were up-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were decreased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were down-regulated (all P<0.05) in the LY294002+SiO2 group. Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were up-regulated and the protein expressions of LC3II and Beclin-1 were down-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were increased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated (all P<0.05) in the SC79+SiO2 group.
CONCLUSIONS
Silica dust exposure inhibits the PI3K/Akt/mTOR pathway, increases autophagy and concentration of inflammatory factors in macrophages, and promotes the phenotype transformation of HFL-1 cells into myofibroblasts. The regulation of the PI3K/Akt/mTOR pathway can affect the autophagy induction and the concentration of inflammatory factors of macrophages by silica dust exposure, and then affect the phenotype transformation of HFL-1 cells into myofibroblasts induced by silica dust exposure.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Silicon Dioxide/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Matrix Metalloproteinase 1/metabolism*
;
Tissue Inhibitor of Metalloproteinase-1
;
Sirolimus
;
Beclin-1/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Dust
;
TOR Serine-Threonine Kinases/metabolism*
;
Lung/metabolism*
;
Fibroblasts/metabolism*
;
Silicosis/metabolism*
;
Macrophages/metabolism*
;
Autophagy

Result Analysis
Print
Save
E-mail