1.Research on the mechanism of gentiopicroside preventing macrophage-mediated liver fibrosis by regulating the MIF-SPP1 signaling pathway in hepatic stellate cells.
Jixu WANG ; Yingbin ZHU ; Maoli CHEN ; Yongfeng HAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):593-602
Objective To explore the mechanism by which gentiopicroside (GPS) prevents macrophage-mediated hepatic fibrosis by regulating the macrophage migration inhibitory factor (MIF)-secreted phosphoprotein 1 (SPP1) signaling pathway in hepatic stellate cells. Methods LX-2 cells were divided into control group, transforming growth factor β(TGF-β) group, and TGF-β combined with GPS (25, 50, 100, 150 μmol/mL) groups. Cell proliferation was detected by EDU assay, cell invasion was assessed by TranswellTM assay, and the protein expressions of α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) were measured by Western blot. M1-type macrophage-conditioned medium (M1-CM) was used to treat LX-2 cells in the TGF-β group and TGF-β combined with GPS group. The concentrations of inducible nitric oxide synthase (iNOS) and arginase 1 (Arg1) in the cell supernatant, as well as cell proliferation, invasion ability, and the expressions of α-SMA and COL1A1 were detected. Bioinformatics analysis was performed to identify the target intersections of GPS, hepatic fibrosis, and macrophage-related genes. Drug affinity responsive target stability (DARTS) experiments and Western blot were used to verify the regulatory effect of GPS on MIF. Furthermore, LX-2 cells were divided into control group, TGF-β group, TGF-β combined with M2-CM group, TGF-β and oe-NC combined with M2-CM group, and TGF-β and oe-MIF combined with M2-CM group to analyze the concentrations of iNOS and Arg1 in the cell supernatant, as well as changes in cell proliferation, invasion, and the expressions of α-SMA and COL1A1. LX-2 cells were also divided into control group, TGF-β group, TGF-β combined with oe-NC group, TGF-β combined with oe-MIF group, and TGF-β and oe-MIF combined with GPS group to determine the protein expressions of MIF and SPP1 by Western blot. A rat model of hepatic fibrosis was constructed to explore the potential therapeutic effects of GPS on hepatic fibrosis in vivo. Results Compared with the control group, the proliferation and invasion abilities of LX-2 cells in the TGF-β group were increased, and the protein expressions of α-SMA and COL1A1 were enhanced. GPS intervention inhibited the proliferation and invasion of LX-2 cells under TGF-β conditions and reduced the expressions of α-SMA and COL1A1. Compared with the control group, the concentration of iNOS in the cell supernatant of the TGF-β group was upregulated, while the concentration of Arg1 was decreased. M1-CM treatment further increased the concentration of iNOS, decreased the concentration of Arg1, and promoted cell proliferation and invasion, as well as upregulated the expressions of α-SMA and COL1A1 on the basis of TGF-β intervention. However, GPS could reverse the effects of M1-CM intervention. Bioinformatics analysis revealed that MIF was one of the target intersections of GPS, hepatic fibrosis, and macrophage-related genes, and GPS could target and inhibit its expression. Compared with the TGF-β group, after M2-CM intervention, the concentration of iNOS in the cell supernatant decreased, the concentration of Arg1 increased, the proliferation and invasion abilities of LX-2 cells were reduced, and the expressions of α-SMA and COL1A1 were weakened. However, overexpression of MIF reversed the effects of M2-CM intervention. Western blot results showed that compared with the control group, the protein expressions of MIF and SPP1 were enhanced in the TGF-β group. Overexpression of MIF further enhanced the expressions of MIF and SPP1, while GPS intervention inhibited the expressions of MIF and SPP1. In the animal experiment, GPS intervention treatment alleviated liver injury in rats with hepatic fibrosis and inhibited the expressions of MIF and SPP1, as well as α-SMA and COL1A1 in liver tissue. Conclusion GPS may prevent macrophage-mediated hepatic fibrosis by inhibiting the MIF-SPP1 signaling pathway in hepatic stellate cells.
Hepatic Stellate Cells/metabolism*
;
Signal Transduction/drug effects*
;
Macrophage Migration-Inhibitory Factors/genetics*
;
Liver Cirrhosis/prevention & control*
;
Macrophages/drug effects*
;
Iridoid Glucosides/pharmacology*
;
Humans
;
Cell Proliferation/drug effects*
;
Animals
;
Cell Line
;
Collagen Type I/metabolism*
;
Collagen Type I, alpha 1 Chain
;
Intramolecular Oxidoreductases/genetics*
;
Rats
;
Transforming Growth Factor beta/pharmacology*
;
Actins/metabolism*
2.Clinical efficacy of clear aligner treatment for pathologically migrated teeth in the anterior region of patients with severe periodontitis.
Jingqian LI ; Zilu ZHU ; Jian JIAO ; Jie SHI
Journal of Peking University(Health Sciences) 2025;57(1):51-56
OBJECTIVE:
To evaluate the clinical efficacy of clear aligner therapy in patients with severe periodontitis accompanied by pathological tooth displacement in the anterior region.
METHODS:
This retrospective study analyzed patients diagnosed with severe periodontitis and pathological displacement in the anterior region, who visited both the Periodontics and Orthodontics Departments at Peking University School and Hospital of Stomatology between 2019 and 2022. A total of 26 eligible cases were included in this study. All the patients underwent regular periodontal maintenance throughout the treatment process, and clear aligners were used for orthodontic treatment. Intraoral scans were analyzed by dedicated software to measure and compare occlusal distribution and proximal contact scores before and after orthodontic treatment. Periodontal clinical indicators were assessed at three key time points: before periodontal treatment (T0), before orthodontic treatment (T1), and after orthodontic treatment (T2). All the cases were treated with clear aligner.
RESULTS:
A total of 217 pathologically displaced anterior teeth from 26 patients were analyzed. Among these, 105 teeth exhibited periodontal pockets [probing depth (PD) ≥5 mm] before periodontal treatment. After clear aligner therapy, the occlusal score improved significantly from 10.35±8.61 to 23.62±9.73 (P < 0.001), and the proximal contact score increased from 13.62±4.73 to 31.62±10.37 (P < 0.001). The median PD decreased significantly from 3.33 mm [interquartile range (IQR)=0.92] at T0 to 2.50 mm (IQR=0.67, P < 0.001) at T1 and remained stable at 2.50 mm (IQR=0.50) after treatment (T2). A significant reduction in PD was observed between T0 and T2 (P < 0.001), but no significant difference was found between T1 and T2 (P=0.948).
CONCLUSION
Clear aligner therapy demonstrates favorable clinical efficacy in patients with severe periodontitis and pathological anterior tooth displacement. It effectively improves occlusal distribution and proximal contact while maintaining periodontal health in these patients. However, further large-scale prospective controlled studies are needed to verify its long-term clinical outcomes.
Humans
;
Retrospective Studies
;
Periodontitis/therapy*
;
Female
;
Male
;
Adult
;
Tooth Migration/therapy*
;
Tooth Movement Techniques/methods*
;
Treatment Outcome
;
Middle Aged
;
Young Adult
;
Orthodontic Appliances, Removable
3.Causal relationship between circulating cytokines and keloids: A Mendelian randomized study.
Xuan CHEN ; Kexin DENG ; Jianda ZHOU ; Can LIU
Journal of Central South University(Medical Sciences) 2025;50(7):1145-1157
OBJECTIVES:
Keloids are fibrotic skin disorders characterized by excessive collagen deposition and a high recurrence rate, closely associated with inflammatory mediators. However, existing epidemiological studies are limited by confounding factors and reverse causality, making it difficult to establish causation. This study aims to investigate the causal relationship between circulating cytokines and keloids using Mendelian randomization analysis.
METHODS:
Significant single nucleotide polymorphisms (SNPs) associated with circulating cytokines (exposures) and keloids (outcomes) were extracted from genome-wide association study (GWAS) summary datasets. Eligible SNPs were selected as instrumental variables (IVs). Exposure data were derived from a cytokine GWAS including 8 293 Finnish participants, and outcome data from a keloid GWAS based on the UK Biobank. The inverse-variance weighted (IVW) method served as the primary analytical approach to estimate causal effects, supplemented by weighted median (WME), MR-Egger regression, and other sensitivity analyses. Horizontal pleiotropy was assessed using MR-Egger regression and the MR pleiotropy residual sum and outlier (MR-PRESSO) test, while Cochran's Q test evaluated heterogeneity. Leave-one-out analysis was used to verify robustness and consistency. A reverse MR analysis was also conducted, with keloid as the exposure and cytokines as outcomes, to rule out reverse causation.
RESULTS:
IVW analysis identified significant positive causal associations between two cytokines and keloids-macrophage migration inhibitory factor (MIF) [odds ratio (OR)=2.081, 95% confidence interval (CI) 1.219 to 3.552, P=0.007] and monocyte chemoattractant protein-1 (MCP-1) (OR=1.673, 95% CI 1.036 to 2.701, P=0.035). Conversely, stem cell factor (SCF) showed a negative causal relationship with keloids (OR=0.518, 95% CI 0.269 to 0.998, P=0.049). Results from the MR-Egger and weighted median analyses were consistent with IVW findings. No evidence of horizontal pleiotropy was observed (P>0.05). Except for interleukin-6 (P=0.014), no heterogeneity was detected in other cytokines. Leave-one-out analysis further confirmed the robustness of the causal associations. In reverse MR analysis, keloids were causally related only to β-nerve growth factor (beta-NGF) (OR=1.048, 95% CI 1.002 to 1.095, P=0.039), with no heterogeneity or pleiotropy detected in most cytokines (P>0.05).
CONCLUSIONS
MIF and MCP-1 exhibit positive causal associations with keloid formation, while SCF shows a negative causal relationship. These findings provide new evidence for the causal involvement of inflammatory cytokines in keloid pathogenesis and offer potential molecular targets for developing novel keloid therapies.
Humans
;
Keloid/blood*
;
Mendelian Randomization Analysis
;
Cytokines/genetics*
;
Polymorphism, Single Nucleotide
;
Genome-Wide Association Study
;
Chemokine CCL2/genetics*
;
Interleukin-6/genetics*
;
Macrophage Migration-Inhibitory Factors/genetics*
;
Male
;
Stem Cell Factor/blood*
;
Female
;
Intramolecular Oxidoreductases
4.Deciphering the Role of VIM, STX8, and MIF in Pneumoconiosis Susceptibility: A Mendelian Randomization Analysis of the Lung-Gut Axis and Multi-Omics Insights from European and East Asian Populations.
Chen Wei ZHANG ; Bin Bin WAN ; Yu Kai ZHANG ; Tao XIONG ; Yi Shan LI ; Xue Sen SU ; Gang LIU ; Yang Yang WEI ; Yuan Yuan SUN ; Jing Fen ZHANG ; Xiao YU ; Yi Wei SHI
Biomedical and Environmental Sciences 2025;38(10):1270-1286
OBJECTIVE:
Pneumoconiosis, a lung disease caused by irreversible fibrosis, represents a significant public health burden. This study investigates the causal relationships between gut microbiota, gene methylation, gene expression, protein levels, and pneumoconiosis using a multi-omics approach and Mendelian randomization (MR).
METHODS:
We analyzed gut microbiota data from MiBioGen and Esteban et al. to assess their potential causal effects on pneumoconiosis subtypes (asbestosis, silicosis, and inorganic pneumoconiosis) using conventional and summary-data-based MR (SMR). Gene methylation and expression data from Genotype-Tissue Expression and eQTLGen, along with protein level data from deCODE and UK Biobank Pharma Proteomics Project, were examined in relation to pneumoconiosis data from FinnGen. To validate our findings, we assessed self-measured gut flora from a pneumoconiosis cohort and performed fine mapping, drug prediction, molecular docking, and Phenome-Wide Association Studies to explore relevant phenotypes of key genes.
RESULTS:
Three core gut microorganisms were identified: Romboutsia ( OR = 0.249) as a protective factor against silicosis, Pasteurellaceae ( OR = 3.207) and Haemophilus parainfluenzae ( OR = 2.343) as risk factors for inorganic pneumoconiosis. Additionally, mapping and quantitative trait loci analyses revealed that the genes VIM, STX8, and MIF were significantly associated with pneumoconiosis risk.
CONCLUSIONS
This multi-omics study highlights the associations between gut microbiota and key genes ( VIM, STX8, MIF) with pneumoconiosis, offering insights into potential therapeutic targets and personalized treatment strategies.
Humans
;
Male
;
East Asian People/genetics*
;
Europe
;
Gastrointestinal Microbiome
;
Lung
;
Macrophage Migration-Inhibitory Factors/metabolism*
;
Mendelian Randomization Analysis
;
Multiomics
;
Pneumoconiosis/microbiology*
;
Intramolecular Oxidoreductases
5.Macrophage migration inhibitory factor protects bone marrow mesenchymal stem cells from hypoxia/ischemia-induced apoptosis by regulating lncRNA MEG3.
Zhibiao BAI ; Kai HU ; Jiahuan YU ; Yizhe SHEN ; Chun CHEN
Journal of Zhejiang University. Science. B 2022;23(12):989-1001
OBJECTIVES:
This research was performed to explore the effect of macrophage migration inhibitory factor (MIF) on the apoptosis of bone marrow mesenchymal stem cells (BMSCs) in ischemia and hypoxia environments.
METHODS:
The cell viability of BMSCs incubated under hypoxia/ischemia (H/I) conditions with or without pretreatment with MIF or triglycidyl isocyanurate (TGIC) was detected using cell counting kit-8 (CCK-8) analysis. Plasmids containing long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) or β-catenin small interfering RNA (siRNA) were used to overexpress or downregulate the corresponding gene, and the p53 signaling pathway was activated by pretreatment with TGIC. The influences of MIF, overexpression of lncRNA MEG3, activation of the p53 signaling pathway, and silencing of β-catenin on H/I-induced apoptosis of BMSCs were revealed by western blotting, flow cytometry, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining.
RESULTS:
From the results of CCK-8 assay, western blotting, and flow cytometry, pretreatment with MIF significantly decreased the H/I-induced apoptosis of BMSCs. This effect was inhibited when lncRNA MEG3 was overexpressed by plasmids containing MEG3. The p53 signaling pathway was activated by TGIC, and β-catenin was silenced by siRNA. From western blot results, the expression levels of β-catenin in the nucleus and phosphorylated p53 (p-p53) were downregulated and upregulated, respectively, when the lncRNA MEG3 was overexpressed. Through flow cytometry, MIF was also shown to significantly alleviate the increased reactive oxygen species (ROS) level of BMSCs caused by H/I.
CONCLUSIONS
In summary, we conclude that MIF protected BMSCs from H/I-induced apoptosis by downregulating the lncRNA MEG3/p53 signaling pathway, activating the Wnt/β-catenin signaling pathway, and decreasing ROS levels.
Humans
;
RNA, Long Noncoding/metabolism*
;
Macrophage Migration-Inhibitory Factors/metabolism*
;
beta Catenin/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Sincalide/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Apoptosis
;
Mesenchymal Stem Cells
;
Wnt Signaling Pathway/genetics*
;
RNA, Small Interfering/metabolism*
;
Hypoxia/metabolism*
;
Ischemia
;
Bone Marrow Cells
6.Wound Healing Potential of Low Temperature Plasma in Human Primary Epidermal Keratinocytes
Hui Song CUI ; Yoon Soo CHO ; So Young JOO ; Chin Hee MUN ; Cheong Hoon SEO ; June Bum KIM
Tissue Engineering and Regenerative Medicine 2019;16(6):585-593
BACKGROUND: Low temperature plasma (LTP) was recently shown to be potentially useful for biomedical applications such as bleeding cessation, cancer treatment, and wound healing, among others. Keratinocytes are a major cell type that migrates directionally into the wound bed, and their proliferation leads to complete wound closure during the cutaneous repair/regeneration process. However, the beneficial effects of LTP on human keratinocytes have not been well studied. Therefore, we investigated migration, growth factor production, and cytokine secretion in primary human keratinocytes after LTP treatment.METHODS: Primary cultured keratinocytes were obtained from human skin biopsies. Cell viability was measured with the EZ-Cytox cell viability assay, cell migration was evaluated by an in vitro wound healing assay, gene expression was analyzed by quantitative real-time polymerase chain reaction, and protein expression was measured by enzyme-linked immunosorbent assays and western blotting after LTP treatment.RESULTS: Cell migration, the secretion of several cytokines, and gene and protein levels of angiogenic growth factors increased in LTP-treated human keratinocytes without associated cell toxicity. LTP treatment also significantly induced the expression of hypoxia inducible factor-1α (HIF-1α), an upstream regulator of angiogenesis. Further, the inhibition of HIF-1α expression blocked the production of angiogenic growth factors induced by LTP in human keratinocytes.CONCLUSION: Our results suggest that LTP treatment is an effective approach to modulate wound healing-related molecules in epidermal keratinocytes and might promote angiogenesis, leading to improved wound healing.
Anoxia
;
Biopsy
;
Blotting, Western
;
Cell Migration Assays
;
Cell Movement
;
Cell Survival
;
Cytokines
;
Enzyme-Linked Immunosorbent Assay
;
Gene Expression
;
Hemorrhage
;
Humans
;
In Vitro Techniques
;
Intercellular Signaling Peptides and Proteins
;
Keratinocytes
;
Plasma
;
Real-Time Polymerase Chain Reaction
;
Skin
;
Wound Healing
;
Wounds and Injuries
7.Intrusion of the extruded maxillary central incisor using skeletal anchorage system and unilateral segmental intrusion arch
Eun Young KWON ; Young Jae BAEK ; Soo Byung PARK ; Seong sik KIM ; Yong il KIM ; Youn kyung CHOI
Journal of Dental Rehabilitation and Applied Science 2019;35(3):180-190
Patients who have a moderate periodontitis with pathologic tooth migration of maxillary incisors, it is necessary not only periodontal treatment for reduce periodontal inflammation, but also orthodontic treatment to teeth repositioning. For orthodontic treatment, it is necessary to apply less force and careful considerations of the center of resistance of the tooth and optimal force of tooth movement. At this time, the segmental arch applied only to the target teeth, is more effective and predictable, because applied force and direction can be controlled. In addition, to design the orthodontic appliance that can prevent the unwanted tooth movement that used as an anchorage is important. In recent years, various types of skeletal anchorage system have been used for preventing loss of the anchorage. We reported the patient who had extruded maxillary central incisor due to pathologic tooth migration, treated by a successful periodontal-orthodontic multidisciplinary treatment using an orthodontic appliance designed to apply less traumatic force and reduce an anchorage loss.
Humans
;
Incisor
;
Inflammation
;
Orthodontic Appliance Design
;
Orthodontic Appliances
;
Orthodontic Wires
;
Periodontitis
;
Tooth
;
Tooth Migration
;
Tooth Movement
8.Silent invasion of Hem-O-Lok clip.
Dong Jin PARK ; Byung Gyu KIM ; In Du JEONG ; Gyu Yeol KIM
Annals of Surgical Treatment and Research 2018;94(3):159-161
A 58-year-old man underwent laparoscopy-assisted distal gastrectomy (LADG) with Billroth I gastroduodenostomy due to early gastric cancer. During surgery, the perigastric vessels were ligated with Hem-o-Lok clips. Esophagogastroduodenoscopy (EGD) 6 months later showed a fungating mass at the anastomosis site. Repeat EGD 1 year after LADG showed a Hem-o-Lok clip at the fungating mass lesion. Because the patient was asymptomatic, with no major abnormalities on clinical examination, and endoscopic removal of the clip would have been difficult due to the presence of adhesions and inflammation, no attempt was made to remove the clip. The patient remained well after the exposed Hem-o-Lok clip was identified. A third EGD 6 months later showed that the clip had disappeared from the anastomosis site, and that this site was covered with normal mucosa surrounding the scar.
Cicatrix
;
Endoscopy, Digestive System
;
Foreign-Body Migration
;
Gastrectomy
;
Gastroenterostomy
;
Humans
;
Inflammation
;
Middle Aged
;
Mucous Membrane
;
Postoperative Complications
;
Stomach Neoplasms
;
Surgical Instruments
9.Genetic Diversity of Plasmodium vivax Causing Epidemic Malaria in the Republic of Korea
Young Yil BAHK ; Jeonga KIM ; Seong Kyu AHN ; Byoung Kuk NA ; Jong Yil CHAI ; Tong Soo KIM
The Korean Journal of Parasitology 2018;56(6):545-552
Plasmodium vivax is more challenging to control and eliminate than P. falciparum due to its more asymptomatic infections with low parasite densities making diagnosis more difficult, in addition to its unique biological characteristics. The potential re-introduction of incidence cases, either through borders or via human migrations, is another major hurdle to sustained control and elimination. The Republic of Korea has experienced re-emergence of vivax malaria in 1993 but is one of the 32 malaria-eliminating countries to-date. Despite achieving successful nationwide control and elimination of vivax malaria, the evolutionary characteristics of vivax malaria isolates in the Republic of Korea have not been fully understood. In this review, we present an overview of the genetic variability of such isolates to increase understanding of the epidemiology, diversity, and dynamics of vivax populations in the Republic of Korea.
Asymptomatic Infections
;
Diagnosis
;
Epidemiology
;
Genetic Variation
;
Human Migration
;
Incidence
;
Korea
;
Malaria
;
Malaria, Vivax
;
Parasites
;
Plasmodium vivax
;
Plasmodium
;
Population Characteristics
;
Republic of Korea
10.MicroRNA-373 Inhibits Cell Proliferation and Invasion via Targeting BRF2 in Human Non-small Cell Lung Cancer A549 Cell Line.
Lei WANG ; Junfeng QU ; Li ZHOU ; Fei LIAO ; Ju WANG
Cancer Research and Treatment 2018;50(3):936-949
PURPOSE: The purpose of this study was to investigate the biological role and mechanism of miR-373 targeting of TFIIB-related factor 2 (BRF2) in the regulation of non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS: miRNA microarray chip analysis of four paired NSCLC and adjacent non-tumor tissues was performed. Quantitative real-time polymerase chain reaction (qRT-PCR) andwestern blotting were used to detect the expression levels of miR-373 and BRF2 in NSCLC tissues and cell lines. The dual-luciferase reporter method was performed to determine if BRF2 is a target of miR-373. MTT, wound-healing, Transwell, and flow cytometric assays were conducted to examine the proliferation, migration, invasion, and cell cycle progression of NSCLC A549 cells, respectively; western blotting was used to detect the expression of epithelial-mesenchymal transition (EMT)–related proteins. RESULTS: The miRNA microarray chip analysis demonstrated that miR-373 was down-regulated in NSCLC tissues, and this result was confirmed by qRT-PCR. Additionally, miR-373 was confirmed to target BRF2. Moreover, miR-373 expression was inversely correlated with BRF2 expression in NSCLC tissues and cell lines; both miR-373 down-regulation and BRF2 up-regulation were strongly associated with the clinicopathological features and prognosis of NSCLC patients. In vitro, overexpression of miR-373 markedly inhibited cell proliferation, migration, and invasion; up-regulated the expression of E-cadherin; and down-regulated the expression of N-cadherin and Snail in A549 cell. Knockdown BRF2 by siRNA resulted in effects similar to those caused by overexpression of miR-373. CONCLUSION: MiR-373 is decreased in NSCLC, and overexpression of miR-373 can suppress cell EMT, and inhibit the proliferation, migration, and invasion of NSCLC A549 cells by targeting BRF2.
Blotting, Western
;
Cadherins
;
Carcinoma, Non-Small-Cell Lung*
;
Cell Cycle
;
Cell Line*
;
Cell Migration Inhibition
;
Cell Proliferation*
;
Down-Regulation
;
Epithelial-Mesenchymal Transition
;
Humans*
;
In Vitro Techniques
;
Methods
;
MicroRNAs
;
Prognosis
;
Real-Time Polymerase Chain Reaction
;
RNA, Small Interfering
;
Snails
;
Up-Regulation

Result Analysis
Print
Save
E-mail