1.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
2.4 Weeks of HIIT Modulates Metabolic Homeostasis of Hippocampal Pyruvate-lactate Axis in CUMS Rats Improving Their Depression-like Behavior
Yu-Mei HAN ; Chun-Hui BAO ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Huan XIANG ; Jun-Sheng TIAN ; Shi ZHOU ; Shuang-Shuang WU
Progress in Biochemistry and Biophysics 2025;52(6):1468-1483
ObjectiveTo investigate the role of 4-week high-intensity interval training (HIIT) in modulating the metabolic homeostasis of the pyruvate-lactate axis in the hippocampus of rats with chronic unpredictable mild stress (CUMS) to improve their depressive-like behavior. MethodsForty-eight SPF-grade 8-week-old male SD rats were randomly divided into 4 groups: the normal quiet group (C), the CUMS quiet group (M), the normal exercise group (HC), and the CUMS exercise group (HM). The M and HM groups received 8 weeks of CUMS modeling, while the HC and HM groups were exposed to 4 weeks of HIIT starting from the 5th week (3 min (85%-90%) Smax+1 min (50%-55%) Smax, 3-5 cycles, Smax is the maximum movement speed). A lactate analyzer was used to detect the blood lactate concentration in the quiet state of rats in the HC and HM groups at week 4 and in the 0, 2, 4, 8, 12, and 24 h after exercise, as well as in the quiet state of rats in each group at week 8. Behavioral indexes such as sucrose preference rate, number of times of uprightness and number of traversing frames in the absenteeism experiment, and other behavioral indexes were used to assess the depressive-like behavior of the rats at week 4 and week 8. The rats were anesthetized on the next day after the behavioral test in week 8, and hippocampal tissues were taken for assay. LC-MS non-targeted metabolomics, target quantification, ELISA and Western blot were used to detect the changes in metabolite content, lactate and pyruvate concentration, the content of key metabolic enzymes in the pyruvate-lactate axis, and the protein expression levels of monocarboxylate transporters (MCTs). Results4-week HIIT intervention significantly increased the sucrose preference rate, the number of uprights and the number of traversed frames in the absent field experiment in CUMS rats; non-targeted metabolomics assay found that 21 metabolites were significantly changed in group M compared to group C, and 14 and 11 differential metabolites were significantly dialed back in the HC and HM groups, respectively, after the 4-week HIIT intervention; the quantitative results of the targeting showed that, compared to group C, lactate concentration in the hippocampal tissues of M group, compared with group C, lactate concentration in hippocampal tissue was significantly reduced and pyruvate concentration was significantly increased, and 4-week HIIT intervention significantly increased the concentration of lactate and pyruvate in hippocampal tissue of HM group; the trend of changes in blood lactate concentration was consistent with the change in lactate concentration in hippocampal tissue; compared with group C, the LDHB content of group M was significantly increased, the content of PKM2 and PDH, as well as the protein expression level of MCT2 and MCT4 were significantly reduced. The 4-week HIIT intervention upregulated the PKM2 and PDH content as well as the protein expression levels of MCT2 and MCT4 in the HM group. ConclusionThe 4-week HIIT intervention upregulated blood lactate concentration and PKM2 and PDH metabolizing enzymes in hippocampal tissues of CUMS rats, and upregulated the expression of MCT2 and MCT4 transport carrier proteins to promote central lactate uptake and utilization, which regulated metabolic homeostasis of the pyruvate-lactate axis and improved depressive-like behaviors.
3.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
4.Mechanism of L-perilla alcohol in intervening hypoxic pulmonary hypertension based on network pharmacology and experimental verification.
Yu-Rong WANG ; Yang YU ; Zhuo-Sen LIANG ; Li TONG ; Dian-Xiang LU ; Xing-Mei NAN
China Journal of Chinese Materia Medica 2025;50(1):209-217
The mechanism of L-perilla alcohol(L-POH) in intervening hypoxic pulmonary hypertension(HPAH) was discussed based on network pharmacology, and experimental verification. The active components and potential targets of the volatile oil of Rhodiola tangutica(VORA) in the intervention of HPAH were screened by network pharmacology. The biological process of Gene Ontology(GO) and the signaling pathway enrichment of Kyoto Encyclopedia of Genes and Genomes(KEGG) were analyzed for the core targets, and a "component-common target-disease" network was constructed. Four active components were screened from VORA: L-POH, linalool, geraniol, and(-)-myrtenol. The core targets for treating HPAH were HSP90AA1, AKT1, ESR1, PIK3CA, EP300, EGFR, and JAK2. GO enrichment analysis mainly involved biological processes such as reaction to hypoxia, heme binding, and steroid binding. KEGG enrichment analysis mainly involved hypoxia-inducing factor 1(HIF-1) signaling pathway, phosphatidylinositol 3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and Janus kinase/activator of signal transduction and transcription(JAK/STAT) signaling pathway. The vasodilation effects of the four active components were screened by perfusion experiment of extracorporeal vascular rings, and the mechanism of the main active component L-POH was studied by channel blockers. The inhibitory effects of the four active components on the proliferation of pulmonary artery smooth muscle cells(PASMCs) induced by hypoxia were screened by cell proliferation experiment, and the mechanism of the main active component L-POH was studied by flow cytometry, cell cycle experiment, and Western blot. The results showed that L-POH could directly act on vascular smooth muscle to relax pulmonary arterioles, induce ATP-sensitive potassium channels to open, and inhibit extracellular Ca~(2+) influx through voltage-gated calcium channels to relax blood vessels. In addition, L-POH could inhibit the abnormal proliferation of PASMCs induced by hypoxia and promote its apoptosis, and its mechanism may be related to the increase in Bax protein expression and the decrease in p-JAK2, p-STAT3, Bcl-2, and cyclinA2 protein expression. In summary, L-POH can interfere with HPAH by relaxing pulmonary arterioles and inhibiting the proliferation of smooth muscle cells.
Network Pharmacology
;
Animals
;
Hypertension, Pulmonary/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Hypoxia/metabolism*
;
Rhodiola/chemistry*
;
Signal Transduction/drug effects*
;
Humans
;
Monoterpenes/chemistry*
;
Male
;
Cell Proliferation/drug effects*
;
Rats, Sprague-Dawley
5.UPLC-Q-TOF-MS combined with network pharmacology reveals effect and mechanism of Gentianella turkestanorum total extract in ameliorating non-alcoholic steatohepatitis.
Wu DAI ; Dong-Xuan ZHENG ; Ruo-Yu GENG ; Li-Mei WEN ; Bo-Wei JU ; Qiang HOU ; Ya-Li GUO ; Xiang GAO ; Jun-Ping HU ; Jian-Hua YANG
China Journal of Chinese Materia Medica 2025;50(7):1938-1948
This study aims to reveal the effect and mechanism of Gentianella turkestanorum total extract(GTI) in ameliorating non-alcoholic steatohepatitis(NASH). UPLC-Q-TOF-MS was employed to identify the chemical components in GTI. SwissTarget-Prediction, GeneCards, OMIM, and TTD were utilized to screen the targets of GTI components and NASH. The common targets shared by GTI components and NASH were filtered through the STRING database and Cytoscape 3.9.0 to identify core targets, followed by GO and KEGG enrichment analysis. AutoDock was used for molecular docking of key components with core targets. A mouse model of NASH was established with a methionine-choline-deficient high-fat diet. A 4-week drug intervention was conducted, during which mouse weight was monitored, and the liver-to-brain ratio was measured at the end. Hematoxylin-eosin staining, Sirius red staining, and oil red O staining were employed to observe the pathological changes in the liver tissue. The levels of various biomarkers, including aspartate aminotransferase(AST), alanine aminotransferase(ALT), hydroxyproline(HYP), total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione(GSH), in the serum and liver tissue were determined. RT-qPCR was conducted to measure the mRNA levels of interleukin 1β(IL-1β), interleukin 6(IL-6), tumor necrosis factor α(TNF-α), collagen type I α1 chain(COL1A1), and α-smooth muscle actin(α-SMA). Western blotting was conducted to determine the protein levels of IL-1β, IL-6, TNF-α, and potential drug targets identified through network pharmacology. UPLC-Q-TOF/MS identified 581 chemical components of GTI, and 534 targets of GTI and 1 157 targets of NASH were screened out. The topological analysis of the common targets shared by GTI and NASH identified core targets such as IL-1β, IL-6, protein kinase B(AKT), TNF, and peroxisome proliferator activated receptor gamma(PPARG). GO and KEGG analyses indicated that the ameliorating effect of GTI on NASH was related to inflammatory responses and the phosphoinositide 3-kinase(PI3K)/AKT pathway. The staining results demonstrated that GTI ameliorated hepatocyte vacuolation, swelling, ballooning, and lipid accumulation in NASH mice. Compared with the model group, high doses of GTI reduced the AST, ALT, HYP, TC, and TG levels(P<0.01) while increasing the HDL-C, SOD, and GSH levels(P<0.01). RT-qPCR results showed that GTI down-regulated the mRNA levels of IL-1β, IL-6, TNF-α, COL1A1, and α-SMA(P<0.01). Western blot results indicated that GTI down-regulated the protein levels of IL-1β, IL-6, TNF-α, phosphorylated PI3K(p-PI3K), phosphorylated AKT(p-AKT), phosphorylated inhibitor of nuclear factor kappa B alpha(p-IκBα), and nuclear factor kappa B(NF-κB)(P<0.01). In summary, GTI ameliorates inflammation, dyslipidemia, and oxidative stress associated with NASH by regulating the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Mice
;
Network Pharmacology
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Humans
;
Mass Spectrometry
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Molecular Docking Simulation
6.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
7.Identification and expression analysis of AP2/ERF family members in Lonicera macranthoides.
Si-Min ZHOU ; Mei-Ling QU ; Juan ZENG ; Jia-Wei HE ; Jing-Yu ZHANG ; Zhi-Hui WANG ; Qiao-Zhen TONG ; Ri-Bao ZHOU ; Xiang-Dan LIU
China Journal of Chinese Materia Medica 2025;50(15):4248-4262
The AP2/ERF transcription factor family is a class of transcription factors widely present in plants, playing a crucial role in regulating flowering, flower development, flower opening, and flower senescence. Based on transcriptome data from flower, leaf, and stem samples of two Lonicera macranthoides varieties, 117 L. macranthoides AP2/ERF family members were identified, including 14 AP2 subfamily members, 61 ERF subfamily members, 40 DREB subfamily members, and 2 RAV subfamily members. Bioinformatics and differential gene expression analyses were performed using NCBI, ExPASy, SOMPA, and other platforms, and the expression patterns of L. macranthoides AP2/ERF transcription factors were validated via qRT-PCR. The results indicated that the 117 LmAP2/ERF members exhibited both similarities and variations in protein physicochemical properties, AP2 domains, family evolution, and protein functions. Differential gene expression analysis revealed that AP2/ERF transcription factors were primarily differentially expressed in the flowers of the two L. macranthoides varieties, with the differentially expressed genes mainly belonging to the ERF and DREB subfamilies. Further analysis identified three AP2 subfamily genes and two ERF subfamily genes as potential regulators of flower development, two ERF subfamily genes involved in flower opening, and two ERF subfamily genes along with one DREB subfamily gene involved in flower senescence. Based on family evolution and expression analyses, it is speculated that AP2/ERF transcription factors can regulate flower development, opening, and senescence in L. macranthoides, with ERF subfamily genes potentially serving as key regulators of flowering duration. These findings provide a theoretical foundation for further research into the specific functions of the AP2/ERF transcription factor family in L. macranthoides and offer important theoretical insights into the molecular mechanisms underlying floral phenotypic differences among its varieties.
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Transcription Factors/chemistry*
;
Lonicera/classification*
;
Flowers/metabolism*
;
Phylogeny
;
Gene Expression Profiling
;
Multigene Family
8.Expression and Clinical Significance of lncRNA NCK1-AS1 in Acute Myeloid Leukemia.
Chen CHENG ; Zi-Jun XU ; Pei-Hui XIA ; Xiang-Mei WEN ; Ji-Chun MA ; Yu GU ; Di YU ; Jun QIAN ; Jiang LIN
Journal of Experimental Hematology 2025;33(2):352-358
OBJECTIVE:
To detect and analyze the expression and clinical significance of long non-coding RNA tyrosine kinase non-catalytic region adaptor protein 1-antisense RNA1 (NCK1-AS1) in patients with acute myeloid leukemia (AML).
METHODS:
89 AML patients and 23 healthy controls were included from the People's Hospital Affiliated to Jiangsu University. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of NCK1-AS1 and NCK1 in bone marrow samples. The relationship between the expression of NCK1-AS1 and the clinical characteristics of patients were analyzed, as well as the correlation between NCK1-AS1 and NCK1.
RESULTS:
The expression level of NCK1-AS1 in all AML, non-M3 AML and cytogenetically normal AML (CN-AML) patients was significantly higher than that in the control group (P < 0.01, P < 0.05, P < 0.01, respectively). In non-M3 AML, patients with high NCK1-AS1 expression had a significantly lower hemoglobin level than those with low NCK1-AS1 expression (P =0.036), furthermore, NCK1-AS1 high patients had shorter overall survival than NCK1-AS1low patients (P =0.0378). Multivariate analysis showed that NCK1-AS1 expression was an independent adverse factor in patients with non-M3 AML ( HR =2.392, 95% CI :1.089-5.255, P =0.030). In addition, NCK1 expression was also significantly upregulated in all AML, non-M3 AML and CN-AML patients compared with controls (P < 0.01, P < 0.01, P < 0.001, respectively). There was a certain correlation between NCK1-AS1 and NCK1 expression (r =0.37, P =0.0058).
CONCLUSION
High expression of NCK1-AS1 in AML indicates poor prognosis of AML patients.
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
RNA, Long Noncoding/genetics*
;
Oncogene Proteins/genetics*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Prognosis
;
Male
;
Female
;
Middle Aged
;
Adult
;
Case-Control Studies
;
Clinical Relevance
9.Efficacy and Safety of Juan Bi Pill with Add-on Methotrexate in Active Rheumatoid Arthritis: A 48-Week, Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial.
Qing-Yun JIA ; Yi-Ru WANG ; Da-Wei SUN ; Jian-Chun MAO ; Luan XUE ; Xiao-Hua GU ; Xiang YU ; Xue-Mei PIAO ; Hao XU ; Qian-Qian LIANG
Chinese journal of integrative medicine 2025;31(2):99-107
OBJECTIVE:
To explore the efficacy and safety of Juan Bi Pill (JBP) in treatment of active rheumatoid arthritis (RA).
METHODS:
From February 2017 to May 2018, 115 participants from 4 centers were randomly divided into JBP group (57 cases) and placebo group (58 cases) in a 1:1 ratio using a random number table method. Participants received a dose of JBP (4 g, twice a day, orally) combined with methotrexate (MTX, 10 mg per week) or placebo (4 g, twice a day, orally) combined with MTX for 12 weeks. Participants were required with follow-up visits at 24 and 48 weeks, attending 7 assessment visits. Participants were undergo disease activity assessment 7 times (at baseline and 2, 4, 8, 12, 24, 48 weeks) and safety assessments 6 times (at baseline and 4, 8, 12, 24, 48 weeks). The primary endpoint was 28-joint Disease Activity Score (DAS28-ESR and DAS28-CRP). The secondary endpoints included American College of Rheumatology (ACR) criteria for 20% and 50% improvement (ACR20/50), Health Assessment Questionnaire Disability Index (HAQ-DI), clinical disease activity index (CDAI), visual analog scale (VAS), Short Form-36 (SF-36) score, Medial Outcomes Study (MOS) sleep scale score, serum erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tender joint count, swollen joint count, and morning stiffness. The adverse reactions were observed during the treatment.
RESULTS:
After 12 weeks of treatment, DAS28-ESR and DAS28-CRP scores in both groups were lower than before treatment (both P<0.01), while the remission rate of DAS28-ESR and DAS28-CRP and low disease activity of JBP group were higher than those in the placebo group (both P<0.01). JBP demonstrated better efficacy on ACR20 and ACR50 compliance rate at 12 and 48 weeks comparing to placebo (all P<0.05). The CDAI and HAQ-DI score, pain VAS and global VAS change of RA patients and physicians, the serum ESR and CRP levels, and the number of tenderness and swelling joints were lower than before treatment at 4, 8, 12, 24, 48 weeks in both groups (P<0.05 or P<0.01), while the reduction of above indices in the JBP group was more obvious than those in the placebo group at 12 weeks (ESR and CRP, both P<0.05) or at 12 and 48 weeks (all P<0.01). There was no difference in adverse reactions between the 2 groups during treatment (P=0.75).
CONCLUSION
JBP combined with MTX could effectively reduce disease activity in patients with RA in active stage, reduce the symptoms of arthritis, and improve the quality of life, while ensuring safety, reliability, and fewer adverse effects. (Trial Registration: ClinicalTrials.gov, No. NCT02885597).
Humans
;
Arthritis, Rheumatoid/drug therapy*
;
Methotrexate/adverse effects*
;
Female
;
Double-Blind Method
;
Male
;
Middle Aged
;
Treatment Outcome
;
Drugs, Chinese Herbal/adverse effects*
;
Drug Therapy, Combination
;
Adult
;
Antirheumatic Agents/adverse effects*
;
Aged
10.Suppression of Hepatocellular Carcinoma through Apoptosis Induction by Total Alkaloids of Gelsemium elegans Benth.
Ming-Jing JIN ; Yan-Ping LI ; Huan-Si ZHOU ; Yu-Qian ZHAO ; Xiang-Pei ZHAO ; Mei YANG ; Mei-Jing QIN ; Chun-Hua LU
Chinese journal of integrative medicine 2025;31(9):792-801
OBJECTIVE:
To evaluate the anti-hepatocellular carcinoma (HCC) activity of total alkaloids from Gelsemium elegans Benth. (TAG) in vivo and in vitro and to elucidate their potential mechanisms of action through transcriptomic analysis.
METHODS:
TAG extraction was conducted, and the primary components were quantified using high-performance liquid chromatography (HPLC). The effects of TAG (100, 150, and 200 µg/mL) on various tumor cells, including SMMC-7721, HepG2, H22, CAL27, MCF7, HT29, and HCT116, were assessed. Effects of TAG on HCC proliferation and apoptosis were detected by colony formation assays and cell stainings. Caspase-3, Bcl-2, and Bax protein levels were detected by Western blotting. In vivo, a tumor xenograft model was developed using H22 cells. Totally 40 Kunming mice were randomly assigned to model, cyclophosphamide (20 mg/kg), TAG low-dose (TAG-L, 0.5 mg/kg), and TAG high-dose (TAG-H, 1 mg/kg) groups, with 10 mice in each group. Tumor volume, body weight, and tumor weight were recorded and compared during 14-day treatment. Immune organ index were calculated. Tissue changes were oberseved by hematoxylin and eosin staining and immunohistochemistry. Additionally, transcriptomic and metabolomic analyses, as well as quatitative real-time polymerase chain reaction (RT-qPCR), were performed to detect mRNA and metabolite expressions.
RESULTS:
HPLC successfully identified the components of TAG extraction. Live cell imaging and analysis, along with cell viability assays, demonstrated that TAG inhibited the proliferation of SMMC-7721, HepG2, H22, CAL27, MCF7, HT29, and HCT116 cells. Colony formation assays, Hoechst 33258 staining, Rhodamine 123 staining, and Western blotting revealed that TAG not only inhibited HCC proliferation but also promoted apoptosis (P<0.05). In vivo experiments showed that TAG inhibited the growth of solid tumors in HCC in mice (P<0.05). Transcriptomic analysis and RT-qPCR indicated that the inhibition of HCC by TAG was associated with the regulation of the key gene CXCL13.
CONCLUSION
TAG inhibits HCC both in vivo and in vitro, with its inhibitory effect linked to the regulation of the key gene CXCL13.
Animals
;
Apoptosis/drug effects*
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Humans
;
Alkaloids/therapeutic use*
;
Gelsemium/chemistry*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Mice
;
Xenograft Model Antitumor Assays

Result Analysis
Print
Save
E-mail