1.Development and immunogenicity evaluation in mice of a novel mRNA vaccine expressing herpes simplex virus type 2 envelope glycoprotein gD.
Jialuo BING ; Liye JIN ; Yao DENG ; Shucai SUN ; Xiaotian HAN ; Xueting CHENG ; Zhenyong QI ; Tangqi WANG ; Ruiwen HAN ; Desheng ZHAI ; Wenjie TAN
Chinese Journal of Biotechnology 2025;41(8):3241-3251
Human alphaherpesvirus 2 (HSV-2) is the main pathogen resulting human genital herpes, which poses a major threat to the socio-economic development, while there is no effective vaccine. In this study, we developed a novel lipopolyplex (LPP)-delivered mRNA vaccine expressing the HSV-2 envelope glycoprotein gD and evaluated its immunogenicity in mice. The mRNA vaccine was prepared from the genetically modified gD mRNA synthesized in vitro combined with the LPP delivery platform and it was named gD-ORI mRNA. The expression of gD antigen in the mRNA vaccine was validated in vitro by Western blotting and indirect immunofluorescence assay, then the immune responses induced by this mRNA vaccine in mice were evaluated. The immunization with gD mRNA alone induced strong humoral and cellular immune responses in mice. Robust and long-lasting gD-specific IgG antibodies were detected in the mouse serum after booster immunization with gD-ORI mRNA. The immunized mice exhibited a Th1/Th2 balanced IgG response and robust neutralizing antibodies against HSV-2, and a clear dose-response relationship was observed. The gD-specific IgG antibodies were maintained in mice for a long time, up to 18 weeks post-booster immunization. At the same time, multifunctional gD-specific CD4+ and CD8+ T cells in vaccinated mice were detected by intracellular cytokine staining (ICS). This novel gD-expressing mRNA vaccine delivered by LPP induces strong and long-lasting immune responses in mice post booster immunization and has a promising prospect for development and application. This study provides scientific evidence and reference for the development of a new mRNA vaccine for HSV-2.
Animals
;
Herpesvirus 2, Human/genetics*
;
Viral Envelope Proteins/genetics*
;
Mice
;
Herpes Genitalis/immunology*
;
RNA, Messenger/immunology*
;
Female
;
Mice, Inbred BALB C
;
Antibodies, Viral/blood*
;
mRNA Vaccines/immunology*
;
Antibodies, Neutralizing/blood*
;
Humans
2.mRNA vaccines as cancer therapies.
Shaoxiong HUANG ; Haiying QUE ; Manni WANG ; Xiawei WEI
Chinese Medical Journal 2024;137(24):2979-2995
Cancer remains a major global health challenge, with conventional treatments like chemotherapy and radiotherapy often hindered by significant side effects, lack of specificity, and limited efficacy in advanced cases. Among emerging therapeutic strategies, mRNA vaccines have shown remarkable potential due to their adaptability, rapid production, and capability for personalized cancer treatment. This review provides an in-depth analysis of messenger RNA (mRNA) vaccines as a therapeutic approach for cancer immunotherapy, focusing on their molecular biology, classification, mechanisms, and clinical studies. Derived from reported literature and data on clinicaltrials.gov, it examines studies on mRNA vaccines encoding tumor-specific antigens (TSAs), tumor-associated antigens (TAAs), immunomodulators, and chimeric antigen receptors (CARs) across various cancer types. The review highlights the ability of mRNA vaccines to encode TSAs and TAAs, enabling personalized cancer treatments, and classifies these vaccines into non-replicating and self-amplifying types. It further explores their mechanisms of action, including antigen presentation and immune activation, while emphasizing findings from clinical studies that demonstrate the potential of mRNA vaccines in cancer therapy. Despite their promise, challenges remain in enhancing delivery systems, improving immunogenicity, and addressing tumor heterogeneity. Overcoming these obstacles will require further investigation to fully harness the potential of mRNA vaccines in personalized cancer treatment.
Humans
;
Cancer Vaccines/immunology*
;
Neoplasms/immunology*
;
mRNA Vaccines/therapeutic use*
;
Immunotherapy/methods*
;
Antigens, Neoplasm/genetics*
;
RNA, Messenger/therapeutic use*
3.Research progress in the translation efficiency of mRNA vaccines.
Tao LIU ; Shengqi WANG ; Wuju LI
Chinese Journal of Biotechnology 2024;40(11):3930-3950
Compared with conventional vaccines, mRNA vaccines have considerable advantages in design, production, and application, especially in dealing with emerging infectious diseases. Particularly, mRNA vaccines were the first to be recommended by the World Health Organization for emergency use during the COVID-19 pandemic. A key to the design of mRNA vaccines is to ensure the stable and sufficient expression of the encoded protein in the recipient. In recent years, advances have been attained in the experimental and computational research in this area. This review focused on the progress and problems in improving the translation efficiency of mRNA vaccines in recent years, aiming to promote related research.
mRNA Vaccines
;
Humans
;
Protein Biosynthesis
;
Vaccines, Synthetic/immunology*
;
COVID-19 Vaccines/immunology*
;
COVID-19/prevention & control*
;
SARS-CoV-2/genetics*
;
RNA, Messenger/genetics*
4.Covid-19 vaccine management (Comirnaty and mrna-1273 Moderna) in a teaching hospital in Italy: a short report on the vaccination campaign.
Francesca PAPINI ; Niccolò GRASSI ; Giovanni GUGLIELMI ; Vittorio GATTINI ; Lucia RAGO ; Costanza BISORDI ; Monica SCATENI ; Michele TOTARO ; Alberto TULIPANI ; Andrea PORRETTA ; Lara TAVOSCHI ; Jacopo GUERCINI ; Grazia LUCHINI ; Silvia BRIANI ; Gaetano Pierpaolo PRIVITERA ; Angelo BAGGIANI
Environmental Health and Preventive Medicine 2021;26(1):99-99
OBJECTIVES:
In this article, we aim to share our experience in the hospital reorganization made to conduct the SARS-CoV-2 vaccination campaign, based on the principles of flexibility and adaptability.
STUDY DESIGN:
A descriptive study.
METHODS:
The data concerning the organization of the vaccination campaign were taken from the operative protocol developed by the hospital dedicated task force, composed by experts in hygiene, public health, occupational medicine, pharmacists, nurses, hospital quality, and disaster managers. Data about the numbers of vaccine administered daily were collected by the Innovation and Development Operative Unit database.
RESULTS:
Vaccinations against COVID-19 started across the EU on the 27th of December 2020. The first phase of the vaccination campaign carried out in our hospital was directed to healthcare workers immunization including medical residents, social care operators, administrative staff and technicians, students of medicine, and health professions trainees. The second phase was enlarged to the coverage of extremely fragile subjects. Thanks to the massive employment of healthcare workers and the establishment of dynamic pathways, it was possible to achieve short turnaround times and a large number of doses administered daily, with peaks of 870 vaccines per day. From the 27th of December up to the 14th of March a total of 26,341 doses of Pfizer have been administered. 13,584 were first doses and 12,757 were second doses. From the 4th to the 14th of March, 296 first doses of Moderna were dispensed. It was necessary to implement adequate spaces and areas adopting anti-contagion safety measures: waiting area for subjects to be vaccinated, working rooms for the dilution of the vaccine and the storage of the material, vaccination rooms, post-vaccination observation areas, room for observation, and treatment of any adverse reactions, with an emergency cart available in each working area.
CONCLUSIONS
The teaching hospital of Pisa faced the beginning of the immunization campaign readjusting its spaces, planning an adequate hospital vaccination area and providing an organization plan to ensure the achievement of the targets of the campaign. This represented a challenge due to limited vaccine doses supplied and the multisectoral teams of professionals to coordinate in the shortest time and the safest way possible. The organizational model adopted proved to be adequate and therefore exploited also for the second phase aimed to extremely fragile subjects.
2019-nCoV Vaccine mRNA-1273
;
BNT162 Vaccine
;
COVID-19/prevention & control*
;
COVID-19 Vaccines/administration & dosage*
;
Hospitals, Teaching/organization & administration*
;
Humans
;
Immunization Programs/organization & administration*
;
Italy/epidemiology*
;
SARS-CoV-2/immunology*

Result Analysis
Print
Save
E-mail