1.Exploring the causal relationship between leukocyte telomere length and prostatitis, orchitis, and epididymitis based on a two-sample Mendelian randomization.
Dan-Yang LI ; Shun YU ; Bo-Hui YANG ; Jun-Bao ZHANG ; Guo-Chen YIN ; Lin-Na WU ; Qin-Zuo DONG ; Jin-Long XU ; Shu-Ping NING ; Rong ZHAO
National Journal of Andrology 2025;31(4):306-312
OBJECTIVE:
To investigate the genetic causal relationship of leukocyte telomere length (LTL) with prostatitis, orchitis and epididymitis by two-sample Mendelian randomization (MR).
METHODS:
Using LTL as the exposure factor and prostatitis, orchitis and epididymitis as outcome factors, we mined the Database of Genome-Wide Association Studies (GWAS). Then, we analyzed the causal relationship of LTL with prostatitis, orchitis and epididymitis by Mendelian randomization using inverse variance weighting (IVW) as the main method and weighted median and MR-Egger regression as auxiliary methods, determined the horizontal multiplicity by MR-Egger intercept test, and conducted sensitivity analysis using the leaving-one-out method.
RESULTS:
A total of 121 related single nucleotide polymorphisms (SNPs) were identified in this study. IVW showed LTL to be a risk factor for prostatitis (OR = 1.383, 95% CI: 1.044-1.832, P = 0.024), and for orchitis and epididymitis as well (OR = 1.770, 95% CI: 1.275-2.456, P = 0.000 6).
CONCLUSION
Genetic evidence from Mendelian randomized analysis indicates that shortening of LTL reduces the risk of prostatitis, orchitis and epididymitis.
Humans
;
Male
;
Mendelian Randomization Analysis
;
Epididymitis/genetics*
;
Prostatitis/genetics*
;
Polymorphism, Single Nucleotide
;
Leukocytes
;
Orchitis/genetics*
;
Genome-Wide Association Study
;
Telomere
;
Risk Factors
2.Macrophage ATF6 accelerates corticotomy-assisted orthodontic tooth movement through promoting Tnfα transcription.
Zhichun JIN ; Hao XU ; Weiye ZHAO ; Kejia ZHANG ; Shengnan WU ; Chuanjun SHU ; Linlin ZHU ; Yan WANG ; Lin WANG ; Hanwen ZHANG ; Bin YAN
International Journal of Oral Science 2025;17(1):28-28
Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon (RAP). Despite its therapeutic effects, the surgical risk and unclear mechanism hamper the clinical application. Numerous evidences support macrophages as the key immune cells during bone remodeling. Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2; R26GFP lineage tracing system. Fluorescence staining, flow cytometry analysis, and western blot determined the significantly enhanced expression of binding immunoglobulin protein (BiP) and emphasized the activation of sensor activating transcription factor 6 (ATF6) in macrophages. Then, we verified that macrophage specific ATF6 deletion (ATF6f/f; CX3CR1CreERT2 mice) decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy. In contrast, macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement. In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6. At the mechanism level, RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfα promotor and augmenting its transcription. Additionally, molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element (ERSE). Taken together, ATF6 may aggravate orthodontic bone remodeling by promoting Tnfα transcription in macrophages, suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.
Animals
;
Mice
;
Macrophages/metabolism*
;
Tumor Necrosis Factor-alpha/genetics*
;
Tooth Movement Techniques/methods*
;
Activating Transcription Factor 6/metabolism*
;
Bone Remodeling
;
Flow Cytometry
;
Blotting, Western
3.RNA G-quadruplex (rG4) exacerbates cellular senescence by mediating ribosome pausing.
Haoxian ZHOU ; Shu WU ; Bin LI ; Rongjinlei ZHANG ; Ying ZOU ; Mibu CAO ; Anhua XU ; Kewei ZHENG ; Qinghua ZHOU ; Jia WANG ; Jinping ZHENG ; Jianhua YANG ; Yuanlong GE ; Zhanyi LIN ; Zhenyu JU
Protein & Cell 2025;16(11):953-967
Loss of protein homeostasis is a hallmark of cellular senescence, and ribosome pausing plays a crucial role in the collapse of proteostasis. However, our understanding of ribosome pausing in senescent cells remains limited. In this study, we utilized ribosome profiling and G-quadruplex RNA immunoprecipitation sequencing techniques to explore the impact of RNA G-quadruplex (rG4) on the translation efficiency in senescent cells. Our results revealed a reduction in the translation efficiency of rG4-rich genes in senescent cells and demonstrated that rG4 structures within coding sequence can impede translation both in vivo and in vitro. Moreover, we observed a significant increase in the abundance of rG4 structures in senescent cells, and the stabilization of the rG4 structures further exacerbated cellular senescence. Mechanistically, the RNA helicase DHX9 functions as a key regulator of rG4 abundance, and its reduced expression in senescent cells contributing to increased ribosome pausing. Additionally, we also observed an increased abundance of rG4, an imbalance in protein homeostasis, and reduced DHX9 expression in aged mice. In summary, our findings reveal a novel biological role for rG4 and DHX9 in the regulation of translation and proteostasis, which may have implications for delaying cellular senescence and the aging process.
G-Quadruplexes
;
Cellular Senescence
;
Ribosomes/genetics*
;
Humans
;
Animals
;
Mice
;
DEAD-box RNA Helicases/genetics*
;
Protein Biosynthesis
;
RNA/chemistry*
;
Neoplasm Proteins
4.Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione.
Fu'an XIE ; Yujia NIU ; Xiaobing CHEN ; Xu KONG ; Guangting YAN ; Aobo ZHUANG ; Xi LI ; Lanlan LIAN ; Dongmei QIN ; Quan ZHANG ; Ruyi ZHANG ; Kunrong YANG ; Xiaogang XIA ; Kun CHEN ; Mengmeng XIAO ; Chunkang YANG ; Ting WU ; Ye SHEN ; Chundong YU ; Chenghua LUO ; Shu-Hai LIN ; Wengang LI
Journal of Pharmaceutical Analysis 2025;15(1):101068-101068
Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.
5.Influencing factors in scale-up of extraction process for Yunpi Xiaoshi Prescription
Xin-Rong LIN ; Zi-Wei GAO ; Ya-Chun SHU ; Xia ZHAO ; Lei WU
Chinese Traditional Patent Medicine 2024;46(2):391-396
AIM To investigate the influencing factors in scale-up of extraction process for Yunpi Xiaoshi Prescription.METHODS HPLC was adopted in the content determination of catechin,ferulic acid,taxifolin,isovitexin,narirutin,atractylenolideⅡ,naringin,morin,hesperidin,luteolin,hederagenin,atractylenolideⅠ,naringenin and hesperetin,the fingerprints were established,after which the effects of container volume,optimal fire and feeding quantity on the contents of various constituents were evaluated.RESULTS Fifteen batches of samples demonstrated the similarities of more than 0.995.Fourteen constituents showed good linear relationships within their own ranges(r>0.999 0),whose average recoveries were 96.4%-103.3%with the RSDs of 0.5%-2.7%.The influencing degree of optimal fire was greater than that of container volume and feeding quantity.CONCLUSION The combination of multi-component content determination and fingerprints can provide data basis and theoretical reference for the technology of consistency evaluation in scale-up of extraction process for Yunpi Xiaoshi Prescription.
6.Based on supramolecular chemistry to explore the scientific connotation of the compatibility between licorice and the insoluble mineral medicine gypsum
Yao-zhi ZHANG ; Wen-min PI ; Lin-ying WU ; Lu-ping YANG ; Shu-chang YAO ; Xiang ZHANG ; Xue-mei HUANG ; Peng-long WANG
Acta Pharmaceutica Sinica 2024;59(4):1048-1056
Licorice-gypsum (gancao-shigao, GC-SG) drug pair was used as the research object, using supramolecular chemistry to explore the scientific connotation of combining herbal medicine GC with insoluble mineral medicine SG in clinical application of traditional Chinese medicine. ① The Tyndall effect, microscopic morphology and particle size of the single and co-decocted of GC and SG were observed, the paste content and conductivity were determined, and the interaction between GC and SG was detected by isothermal titration calorimetry (ITC) and infrared absorption spectroscopy (IR). ② Calcium chloride (CaCl2), a soluble calcium salt of equal gypsum quality, was used instead of SG with GC for co-decocting to explore the effect of calcium salt content on the water decocting, and the characteristics were combined with the Tyndall effect, microscopic morphology, paste content and conductivity. ITC and IR techniques were used to detect the interaction between the two, and the interaction between them was detected by ITC and IR. The zeta potential and ultraviolet-visible spectrophotometry (UV-vis) of GC-SG and GC-CaCl2 co-decoction were compared, and the inorganic and organic components in the co-decoction were detected by inductively coupled plasma optical emission spectrometer (ICP-OES) and high performance liquid chromatography (HPLC). The results showed: ① Compared with the liquid phase of single decoction, GC-SG co-decoction had more obvious Tyndall effect, and showed uniform spherical nanoparticles under electron microscope. Physical characterization results such as paste content and conductivity showed that co-decoction promoted the dissolution of each other's components; ITC and IR results showed that there was strong interaction between GC and SG, which preliminatively indicated that GC and SG co-decoction promoted the formation of uniform and stable supramolecular system of traditional Chinese medicine. ② When soluble calcium salt was used to substitute insoluble SG with GC for co-decocting, a stronger but astigmatic light path appeared than single decocting solution, the zeta potential was reduced, and a large number of accumulated polymers were formed. The results of paste content and conductivity showed that the dissolution of the co-decocting component was reduced than the single decocting component. ITC, UV-vis and IR results showed that there was interaction between GC with Ca2+ and SG. The formation of polysink indicated that a large amount of soluble calcium salt would destroy the stability of supramolecular Chinese medicine. The results of ICP-OES and HPLC showed that the glycyrrhizic acid (GA) content of the former lower than the latter, which was related to the formation of a large number of polycondensates with the increase of Ca2+ concentration and the decrease of the dissolution of GA and other active ingredients. This study indicates that the compatibility of GC and SG can form a uniform and stable supramolecular system of traditional Chinese medicine. Calcium salt, the main component of SG, is taken as the starting point. Excessive soluble Ca2+ can promote the aggregation of active ingredients such as GA, so as to reveal the scientific connotation of the compatibility of GC and SG, an insoluble mineral medicine.
7.The Application of Aptamers in The Diagnosis and Therapy of Bladder Cancer
Shu-Wei FENG ; Min-Xin ZHANG ; Xiao-Qiu WU ; Heng-Yi LIN ; Tao BING
Progress in Biochemistry and Biophysics 2024;51(7):1566-1575
Bladder cancer is one of the most prevalent cancers worldwide, with a high rate of recurrence and mortality, which is the ninth most common malignancy globally. Cystoscopy remains the gold standard for clinical bladder cancer diagnosis, but its invasive nature can lead to bacterial infection and inflammation. Urine cytology is a non-invasive and simple diagnostic method, but it has lower sensitivity in detecting low-grade bladder cancer and may yield false negative results. Therefore, identifying ideal diagnostic and prognostic biomarkers is crucial for accurate diagnosis and effective treatment of bladder cancer. Aptamers, characterized as single-stranded DNA or RNA with unique three-dimensional conformations, exhibit the ability to identify various targets, ranging from small molecules to tumor cells. Aptamers, also known as chemical antibodies, are generated by systematic evolution of ligands by exponential enrichment (SELEX) process and can function similarly to traditional antibodies. They hold numerous advantages over antibodies, such as ease of modification, low immunogenicity, and rapid tissue penetration and cell internalization due to their nucleic acid molecule structure. Since their discovery in the 1990s, aptamers have been widely used in biochemical analysis, disease detection, new drug research and other fields. This article provides an overview of aptamer selection and characterization for bladder cancer, discussing the research advancements involving aptamers in diagnosing and treating this disease. It covers aptamers obtained through different SELEX methods, including protein-SELEX, cell-SELEX, tissue-SELEX, and aptamers from other cancer SELEX; the detection in blood samples and urine samples; and application in targeted therapy and immunotherapy for bladder cancer. Currently, several aptamers capable of identifying bladder cancer have been generated, serving as molecular probes that have played a pivotal role in the early detection and treatment of bladder cancer. Bladder cancer perfusion therapy is well-suited for aptamer drug therapy because it does not require internal circulation, making it a suitable clinical indication for aptamer drug development. In addition, bladder cancer can be detected and monitored by collecting urine samples from patients, making it a preferred disease for clinical conversion of aptamers. While aptamers show promise, there is still much room for development compared with antibodies. There are still many clinically applied cancer biomarkers without corresponding aptamers, and more aptamers targeting different biomarkers should be selected and optimized to improve the sensitivity and accuracy for cancer detection and therapy. The field of aptamers urgently needs successful commercial products to promote its development, and home rapid detection/monitoring, imaging and targeted therapy of bladder cancer by infusion may be the breakthrough point for future application of aptamers.
8.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
9.Risk analysis and control suggestions for suicidal abuse of over-the-counter drug difenidol tablets
Li ZUO ; Wen-Yu WU ; Hai-Qiang WU ; Yi-Hong LIN ; Shu-Kun LAI ; Bin WU ; Qian WANG
The Chinese Journal of Clinical Pharmacology 2024;40(8):1213-1216
Objective To analyze the literature related to diphenidol tablets poisoning,the characteristics of poisoning were summarized to provide reference for controlling the suicidal abuse risk of diphenidol tablets.Methods The global literature on suicide,overdose,poisoning,shock,and death related to difenidol published from January 1,2011 to December 31,2022 was analyzed,including gender,age,dosage,cardiac(blood)concentration,poisoning symptoms,etc.Results Young women were the majority of people with poisoning.The highest proportion of the age group is 11 to 30 years group.Patients who take medication doses greater than 3 000 mg may have a higher risk of death;patients with a heart(blood)concentration greater than 6 μg·mL-1 may have a higher risk of death.Malignant arrhythmia,consciousness disorders,coma,and apnea are common serious adverse events during poisoning.Conclusion It is recommended that the drug regulatory authorities should require the Listing permit holder of difenidol tablets to add the risk and symptoms of poisoning into the instructions.It is suggested that restricting individual consumers from purchasing large amounts of difenidol tablets in the short term.It is recommended that canceling the high-dose sales packaging of difenidol tablets.It is suggested that converting difenidol tablets into prescription drugs,even consider canceling the registration certificate of difenidol tablets.
10.Analysis of HA and NA gene variation characteristics of A(H1N1)pdm09 influenza virus in Shandong Province from 2022 to 2023
Ju-Long WU ; Shu ZHANG ; Yu-Jie HE ; Lin SUN ; Shao-Xia SONG ; Wen-Kui SUN ; Ti LIU
Chinese Journal of Zoonoses 2024;40(5):471-477
This study was aimed at characterizing the variations in hemagglutinin(HA)and neuraminidase(NA)genes of influenza virus subtype A(H1N1)pdm09 isolated during the 2022-2023 influenza monitoring year in Shandong Province,to provide a scientific basis for influenza prevention and control.A total of 14 A(H1N1)pdm09 subtype influenza strains were se-lected randomly by city by the influenza monitoring network laboratory.The vaccine strains recommended by the WHO served as references for whole gene sequencing analysis.A fluorescence method was used to conduct neuraminidase inhibition experi-ments to evaluate drug sensitivity.The A(H1N1)pdm09 influenza virus in Shandong Province,2022-2023 belonged to the 5a.2a evolutionary cluster in the 6B.1A branch.Nucleotide sequence analysis indicated that the HA and NA genes were closely re-lated to the Northern Hemisphere vaccine strain A/Victoria/2570/2019 in the years 2021-2023,and showed homology of 98.5%to 98.7%and 98.8%to 99.1%,respectively.Amino acid sequence analysis revealed 20 amino acid sequence mutations in the HA protein,but only one virus strain was found to have antigen drift,and three virus strains showed loss of HA protein glycosylation sites.No mutations were found at important sites affecting NA enzymes.The neuraminidase inhibition experiment indicated viral sensitivity to anti-influenza drugs.In conclusion,the monitored virus strains had high overall homology with vac-cine strains but showed some amino acid variation.In the future,continued monitoring of the genetic variation characteristics of influenza viruses will be necessary to understand the risk of influenza epidemics,and the effectiveness of influenza vaccines and therapeutic drugs.

Result Analysis
Print
Save
E-mail