1.Huanglian Jiedutang Improves Myelin Damage and Agitated Behavior in Vascular Dementia by Regulating Microglial Polarization via CD22/SHP-1/p-Akt Signaling Pathway
Chen CHEN ; Xiaoxia FENG ; Shiting LIANG ; Xinxian SHI ; Guang YANG ; Jing QIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):25-33
ObjectiveTo investigate the mechanisms by which Huanglian Jiedutang (HLJDT) modulates microglial (MG) phenotypes through the sialic acid-binding Ig-like lectin 2 (SIGLEC2/CD22)/Src-homology-2-domain-containing protein tyrosine phosphatase-1 (SHP-1)/phosphorylated protein kinase B (p-Akt) signaling pathway, thereby promoting myelin repair and alleviating agitation-like behaviors in vascular dementia (VAD). MethodsSixty C57BL/6J mice were randomly assigned to a sham (normal) group, model group, HLJDT low-, medium-, and high-dose groups (2.5, 5, and 10 g·kg-1·d-1), and a risperidone group (2 mg·kg-1·d-1), with 10 mice per group. VAD was induced by bilateral common carotid artery stenosis (BCAS). From day 42, mice received drug interventions for 2 weeks. Agitation-like behaviors were assessed using the resident-intruder test. After behavioral testing, ventrolateral part of the ventromedial hypothalamus (VMHvl) tissues were collected. Western blot was used to measure protein levels of myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), proteolipid protein (PLP), inducible nitric oxide synthase (iNOS), arginase-1 (Arg1), CD86, CD206, and CD22, SHP-1, and p-Akt. Immunofluorescence was used to evaluate myelin-associated glycoprotein (MAG) intensity and the proportion of iNOS+/ionized calcium-binding adapter molecule 1 (Iba1)+ cells. ELISA was used to detect tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β. ResultsCompared with the normal group, the model group exhibited markedly increased biting and aggressive behaviors and shortened attack latency (P<0.01). MOG, MBP, and PLP protein levels and MAG fluorescence intensity were significantly reduced (P<0.05, P<0.01). INOS and CD86 expression and TNF-α, IL-6, and IL-1β levels were significantly elevated (P<0.01). CD22 and SHP-1 expression increased significantly (P<0.01), whereas p-Akt expression decreased (P<0.01). Compared with the model group, the medium- and high-dose HLJDT groups and the risperidone group showed markedly reduced biting and aggression (P<0.05, P<0.01) and prolonged attack latency (P<0.01). MOG, MBP, and PLP levels and MAG fluorescence intensity were significantly increased (P<0.05, P<0.01). INOS, CD86, TNF-α, IL-6, and IL-1β levels decreased significantly (P<0.05, P<0.01). CD22 and SHP-1 expression decreased, while p-Akt expression increased significantly (P<0.05, P<0.01). ConclusionHLJDT may modulate CD22/SHP-1/p-Akt signaling in the VMHvl, promote the shift of MG toward an anti-inflammatory and phagocytic phenotype, enhance myelin repair, and improve agitation-like behaviors in VAD mice.
2.Analysis of Animal Models of Retinitis Pigmentosa Based on Diagnostic Features of Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Jiefeng CHEN ; Xiaoxiao ZHU ; Yina QI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):198-203
Retinitis pigmentosa (RP) is the most common hereditary blinding eye disease in clinical practice, with the pathogenesis remaining unclear. Patients experience progressive apoptosis of retinal photoreceptor cells, accompanied by degeneration of retinal pigment epithelium (RPE) cells. Current Western medical treatments mainly focus on gene therapy and stem cell transplantation, showing limited efficacy. In contrast, clinical observations have confirmed the therapeutic effects of traditional Chinese medicine (TCM) treatments. Establishing an RP animal model that aligns with the diagnostic features of both TCM and Western medicine could help combine the strengths of both approaches, thereby broadening the treatment options for RP. This study categorizes and summarizes the existing RP animal models in terms of classification, types, inheritance patterns, and alignment with clinical manifestations. It is found that current RP models are primarily derived from natural animal models such as RD mice and RCS rats, transgenic animal models like RPE-65 knockout mice and rhodopsin gene knockout mice, and chemically induced models such as those created by monochromatic light exposure or N-ethyl-N-nitrosourea (ENU) administration. These three categories of models focus more on detecting RP-related histopathological, molecular biological, and cellular immunological indicators, but offer limited observation of the overall characteristics of the disease and lack insight into syndrome differentiation. Although RP is a congenital genetic disease, its progression is influenced by acquired factors such as environment, constitution, emotions, and care. Current models do not fully capture the characteristics of this disease. Therefore, establishing an RP animal model based on the diagnostic features of both TCM and Western medicine will have significant implications for future experimental and clinical research.
3.Analysis of Animal Models of Retinitis Pigmentosa Based on Diagnostic Features of Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Jiefeng CHEN ; Xiaoxiao ZHU ; Yina QI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):198-203
Retinitis pigmentosa (RP) is the most common hereditary blinding eye disease in clinical practice, with the pathogenesis remaining unclear. Patients experience progressive apoptosis of retinal photoreceptor cells, accompanied by degeneration of retinal pigment epithelium (RPE) cells. Current Western medical treatments mainly focus on gene therapy and stem cell transplantation, showing limited efficacy. In contrast, clinical observations have confirmed the therapeutic effects of traditional Chinese medicine (TCM) treatments. Establishing an RP animal model that aligns with the diagnostic features of both TCM and Western medicine could help combine the strengths of both approaches, thereby broadening the treatment options for RP. This study categorizes and summarizes the existing RP animal models in terms of classification, types, inheritance patterns, and alignment with clinical manifestations. It is found that current RP models are primarily derived from natural animal models such as RD mice and RCS rats, transgenic animal models like RPE-65 knockout mice and rhodopsin gene knockout mice, and chemically induced models such as those created by monochromatic light exposure or N-ethyl-N-nitrosourea (ENU) administration. These three categories of models focus more on detecting RP-related histopathological, molecular biological, and cellular immunological indicators, but offer limited observation of the overall characteristics of the disease and lack insight into syndrome differentiation. Although RP is a congenital genetic disease, its progression is influenced by acquired factors such as environment, constitution, emotions, and care. Current models do not fully capture the characteristics of this disease. Therefore, establishing an RP animal model based on the diagnostic features of both TCM and Western medicine will have significant implications for future experimental and clinical research.
4.Quantification of in vivo biomechanics and analysis of influencing factors in cervical spine fixed-point rotation manipulation
Jiyao LIANG ; Honghai ZHOU ; Guikang WEI ; Shaoting SU ; Longhao CHEN ; Xinyu HE ; Liangpu LIU
Chinese Journal of Tissue Engineering Research 2025;29(3):486-492
BACKGROUND:Fixed-point rotation manipulation of cervical spine is a mechanical operation with high technical requirements,but the biomechanics of fixed-point manipulation of cervical spine still lacks relevant quantitative data.Moreover,the research on the influencing factors of cervical fixed-point rotation manipulation includes many parameters and there are differences,so it is necessary to further analyze its influencing factors to improve its related data. OBJECTIVE:To quantify the biomechanical parameters of cervical spine fixed-point rotation manipulation,explore the correlation between different biomechanical parameters,and the influence of individual characteristics of the subjects on the biomechanical parameters of cervical spine fixed-point rotation manipulation. METHODS:Totally 35 cases of cervical spondylosis were Outpatients from Orthopedic Department of Renai Branch of the First Affiliated Hospital of Guangxi University of Chinese Medicine and selected as the subjects investigated.Wearable mechanical measuring gloves were used to collect biomechanical parameters of cervical spine fixed-point rotation manipulation,including:thumb preload,thumb maximum thrust,palm preload,palm wrench force,and palm wrench maximum force.Personal characteristic parameters were collected,including age,height,weight,and neck circumference.The key biomechanical parameters in the process of cervical spine fixed-point rotation manipulation were analyzed and different individual characteristics were quantified.The results of biomechanical parameters were analyzed using Spearman correlation analysis.The possible effects of different individual characteristic parameters on biomechanics were analyzed. RESULTS AND CONCLUSION:(1)Compared with bilateral mechanical parameters,there was no significant difference between left manipulation and right manipulation(P>0.05).(2)The average of thumb preload force was(7.21±1.19)N;the average of thumb maximum thrust was(28.40±4.48)N;the average of palm preload was(5.67±2.49)N;the average of palm wrench force was(10.90±5.11)N,and the average of palm wrench maximum force was(16.00±7.27)N.(3)There was a significant positive correlation between palm preload and palm wrench force(Rs=0.812,P<0.01).There was a significant positive correlation between palm preload and palm wrench maximum force(Rs=0.773,P<0.01).There was a significant positive correlation between palm wrench force and palm wrench maximum force(Rs=0.939,P<0.01).(4)The weight was positively correlated with thumb preload,palm preload,palm wrench force and palm wrench maximum force(P<0.05).(5)These findings confirm that there is a certain biomechanical standard value in the operation of cervical spine fixed-point rotation manipulation to treat cervical spondylosis.There is no significant difference between the left and right manipulations,which indicates that the manipulation has good consistency and repeatability.There is consistency and coordination among palm preload force,palm wrench force,and palm wrench maximum force.Their contributions to the therapeutic effect are similar.Body weight is an important factor affecting cervical spine fixed-point rotation manipulation.
5.Short-term efficacy of oblique lateral interbody fusion combined with lateral plate fixation in treatment of single-level lumbar degenerative disease
Xiaoyin LIU ; Jianqun ZHANG ; Zhen CHEN ; Simin LIANG ; Zhiqiang WANG ; Zongjun MA ; Rong MA ; Zhaohui GE
Chinese Journal of Tissue Engineering Research 2025;29(3):531-537
BACKGROUND:Stand-alone oblique lateral interbody fusion has a high rate of complications of fusion segment sink.Oblique lateral interbody fusion with posterior fixation can provide stable support,but intraoperative position changes and double incisions weaken the advantages of this technique.Oblique lateral interbody fusion combined with lateral plate fixation can achieve one-stage decompression in the same incision,while the lateral internal fixation provides stable support. OBJECTIVE:To analyze the short-term efficacy of oblique lateral interbody fusion combined with lateral plate fixation in the treatment of single-level lumbar degenerative disease. METHODS:The clinical data of 34 patients with single-level lumbar degenerative disease treated with oblique lateral interbody fusion combined with lateral plate fixation were collected from May 2020 to October 2022.Among them,14 were males and 20 were females aged from 41 to 72 years at the mean age of(58.6±9.9)years.There were 11 cases of lumbar spondylolisthesis(Ⅰ°),7 cases of lumbar disc herniation with segmental instability,and 16 cases of lumbar spinal stenosis.Operation time,blood loss,and complications were recorded.Visual analog scale scores of lumbago,radiative pain of both lower limbs,and Oswestry disability index scores were evaluated before surgery,3 months after surgery,and the last follow-up.Dural sac cross-sectional area,intervertebral height,and intervertebral fusion were measured and observed. RESULTS AND CONCLUSION:(1)The 34 patients were followed up for 14-36 months,with an average of(21.3±5.2)months.(2)The operation time ranged from 50 to 92 minutes,with an average of(68.5±11.1)minutes.Intraoperative blood loss was 50-170 mL,with an average of(71.6±25.3)mL.(3)Compared with the preoperative results,the visual analog scale scores and Oswestry disability index scores were significantly decreased at 3 months after surgery and at the last follow-up(P<0.001),and the maximum Oswestry disability index scores were improved by nearly 50%.(4)Bone fusion was achieved in all patients during half-year follow-up.The overall complication rate was 21%(7/34),including 1 case of plate displacement,3 cases of cage subsidence,1 case of psoas weakness,and 2 cases of anterior thigh pain.(5)It is concluded that oblique lateral interbody fusion combined with lateral plate fixation for the treatment of lumbar degenerative diseases has the characteristics of less blood loss,short operation time,rapid postoperative recovery,and significant short-term clinical efficacy with the stable support to a certain extent.The long-term curative effect needs further follow-up observation.
6.Effects of electroacupuncture on the expression of metabolic enzymes and autophagy genes in gastrocnemius muscle tissues of exercising rats
Rongfa ZHENG ; Weibin MO ; Peng HUANG ; Junji CHEN ; Ting LIANG ; Fangyu ZI ; Guofeng LI
Chinese Journal of Tissue Engineering Research 2025;29(6):1127-1136
BACKGROUND:Acute exercise tends to cause skeletal muscle tissue damage and lipid metabolism disorders in vivo,but the mechanism by which acute exercise combined with electroacupuncture modulates metabolic and autophagic pathways in vivo is unclear. OBJECTIVE:To observe the changes in metabolic enzymes and autophagy levels in skeletal muscle of rats subjected to acute exercise by electroacupuncture at the acupoints of"Zusanli"and"Huantiao." METHODS:Fifty male Sprague-Dawley rats were randomly divided into three groups:quiet control group(n=10),model group(n=20),and reverse electroacupuncture group(n=20).The latter two groups were set up with two time points,i.e.immediate and 3 hours after exercise groups(n=10 per time point).The model group and the reverse electroacupuncture group underwent acute exercise training after adaptive treadmill training.The rats in the reverse electroacupuncture group underwent electroacupuncture treatment(parameters:electroacupuncture on both sides of the rats at the acupoints of"Zusanli"and"Huantiao,"continuous wave,frequency of 2 Hz,intensity of 2 mA,leaving the needle in the body for 30 minutes,once a day for 7 consecutive days)before treadmill training.Bilateral gastrocnemius muscle tissues were taken under anesthesia immediately after exercise and 3 hours after exercise,and hematoxylin-eosin staining was used to observe the histopathological changes of rat skeletal muscle.ELISA kit was used to detect the activities of hepatic lipase,fatty acid synthase,hormone-sensitive lipase,and carnitine palmitoyltransferase 1 in rat skeletal muscle tissues.Immunohistochemistry and western blot were used to detect the changes in the expression of autophagy genes. RESULTS AND CONCLUSION:After hematoxylin-eosin staining,the arrangement of gastrocnemius muscle fibers in the model group was disturbed,swollen and ruptured immediately after exercise and 3 hours after exercise.In the reverse electroacupuncture group,gastrocnemius muscle fibers were tightly arranged and the number of swollen and ruptured cells was greatly reduced immediately after exercise and 3 hours after exercise,and there was no significant difference when compared with the quiet control group.Compared with the quiet control group,the activities of hepatic lipase and fatty acid synthase were lower while the activities of lipoprotein lipase,hormone-sensitive lipase,and carnitine palmitoyltransferase 1 were higher in the model group and the reverse electroacupuncture group 3 hours after exercise(P<0.05 or P<0.01).Compared with the model group,the activities of lipoprotein lipase and carnitine palmitoyltransferase 1 were higher in the reverse electroacupuncture group immediately after exercise(P<0.05),while the activity of lipoprotein lipase was higher and the activity of hormone-sensitive lipase was lower in the reverse electroacupuncture group 3 hours after exercise(P<0.01).Immunohistochemical results showed that compared with the quiet control group,the expression of P62,autophagy-related gene 5 and autophagy-related gene 7 was higher in the model group immediately and 3 hours after exercise,as well as in the reverse electroacupuncture group immediately after exercise(P<0.05 or P<0.01);compared with the model group,the expression of P62 and autophagy-related gene 7 was lower in the reverse electroacupuncture group immediately and 3 hours after exercise(P<0.05).Western blot results showed that the protein expression of P62 and autophagy-related gene 7 in the reverse electroacupuncture group was lower than that in the model group immediately after exercise(P<0.05);the protein expression of Parkin in the model group was higher than that in the quiet control group immediately and 3 hours after exercise(P<0.05);and the protein expression of Parkin in the reverse electroacupuncture group was lower than that in the model group immediately and 3 hours after exercise(P<0.05).To conclude,acute exercise induces disorders,swelling and rupture of gastrocnemius muscle fibers in rats and electroacupuncture on both sides of the acupoints of"Zusanli"and"Huantiao"can improve the level of lipid metabolism and regulate autophagy cells in rat skeletal muscle,preventing the disorders of lipid metabolism and damage of gastrocnemius muscle tissues caused by acute exercise.The mechanism may be closely related to the regulation of autophagy-related factor P62,autophagy-related gene 5,autophagy-related gene 7,and Parkin protein expression to promote the occurrence of autophagy or regulate the autophagy pathway in rat skeletal muscle cells.
7.Buqi Huoxue Compounds intervene with the expression of related factors and autophagy related proteins in a rat model of cerebral ischemia/reperfusion
Yuning CHEN ; Ying JIANG ; Xiangyu LIAO ; Qiongjun CHEN ; Liang XIONG ; Yue LIU ; Tong LIU
Chinese Journal of Tissue Engineering Research 2025;29(6):1152-1158
BACKGROUND:Buqi Huoxue Compounds have significant clinical efficacy in treating ischemic stroke with Qi deficiency and phlegm stasis;however,the exact mechanism of action is not clear. OBJECTIVE:To observe the effect of Buqi Huoxue Compounds on the expression of vascular endothelial growth factor,basic fibroblast growth factor,brain-derived neurotrophic factor and autophagy related protein Beclin1 and p62 in a rat model of cerebral ischemia/reperfusion. METHODS:Forty male Sprague-Dawley rats were randomly divided into sham operation group,model group,Buqi Huoxue Compounds group and autophagy inhibitor group,with 10 rats in each group.In the latter three groups,a rat model of cerebral ischemia/reperfusion injury was established.The Buqi Huoxue Compounds group was intragastrically given Buqi Huoxue Compounds(6.49 g/kg,administered three times a day)2 hours after reperfusion;the autophagy inhibitor group was intragastrically given Buqi Huoxue Compounds(6.49 g/kg,administered three times a day)2 hours after reperfusion and intraperitoneally given 3-methyladenine 2 hours before gavage and at days 1-3 of gavage.The sham operation group and model group were given equal amounts of saline by gavage for 7 consecutive days.Neurological function,cerebral infarct volume,brain tissue morphology and expression of vascular endothelial growth factor,basic fibroblast growth factor,brain-derived neurotrophic factor and autophagy-related proteins Beclin1 and p62 in the ischemic cortical region of rats were detected at 24 hours after the final administration. RESULTS AND CONCLUSION:Zea-Longa scoring results showed that the neurological function of rats was severely damaged after modeling and neurological deficit of rats in the Buqi Huoxue Compounds group was less than that in the model group and the autophagy inhibitor group(P<0.05).TTC staining showed that cerebral infarct foci were observed in the model group,Buqi Huoxue Compounds group,and autophagy inhibitor group,and the cerebral infarct volume in the Buqi Huoxue Compounds group was lower than that in the model group and the autophagy inhibitor group(P<0.05).The results of hematoxylin-eosin staining in ischemic brain tissues showed that there were large gaps between nerve cells in the model group and cell arrangement was not neat,and cytoplasmic agglutination and pyknosis were observed.Immunohistochemical staining results showed that vascular endothelial growth factor was mostly expressed in neuronal cells,glial cells and capillary endothelium;basic fibroblast growth factor and brain-derived neurotrophic factor were mostly expressed in neuronal cells and glial cells;and there was no significant difference in the expression of vascular endothelial growth factor,basic fibroblast growth factor,and brain-derived neurotrophic factor among the four groups(P>0.05).The results of western blot assay showed that compared with the sham operation group,Beclin1 protein expression was decreased(P<0.05)and p62 protein expression was elevated(P<0.05)in the model group;compared with the model group,Beclin1 protein expression was increased(P<0.05)and p62 protein expression was reduced(P<0.05)in the Buqi Huoxue Compounds group;compared with the Buqi Huoxue Compounds group,Beclin1 protein expression was decreased(P<0.05)and p62 protein expression was elevated(P<0.05)in the autophagy inhibitor group.To conclude,Buqi Huoxue Compounds attenuate cerebral ischemia-reperfusion injury in rats by promoting autophagy.
8.Characterization of postural stability in elderly patients with idiopathic normal pressure hydrocephalus
Xiaoxiao LIANG ; Jiejiao ZHENG ; Linru DUAN ; Xi CHEN ; Tingyu ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(6):1208-1213
BACKGROUND:Impaired postural control is an important risk factor for falls and secondary damage in patients with idiopathic normal pressure hydrocephalus.Most of the existing studies have analyzed the gait parameters of patients during straight-line walking,but few have analyzed the postural stability characteristics of patients during static and dynamic activities. OBJECTIVE:To analyze the characteristics of postural stability in elderly patients with idiopathic normal pressure hydrocephalus. METHODS:Twenty-two patients clinically diagnosed with idiopathic normal pressure hydrocephalus at the Department of Neurosurgery,Huadong Hospital Affiliated to Fudan University,Shanghai,China,from September 2022 to February 2023 were selected as the patient group,and 18 healthy accompanying family members were selected as the healthy control group.The postural stability characteristics of the subjects were assessed using the Timed Up-and-Go Test,Multi-Directional Reach Test,Berg Balance Scale,and Static Balance Function Test(reaction time,speed of movement,directional control,maximum offset distance,and endpoint travel). RESULTS AND CONCLUSION:The time required to complete the Timed Up-and-Go Test was significantly longer in the patient group than in the healthy control group(P<0.05).The results of the stretching test in the four directions of anterior,posterior,leftand right were significantly lower in the patient group than in the healthy control group(P<0.05).The Berg Balance Scale scores in the patient group were lower than those in the healthy control group(P<0.05).In the Static Balance Function Test,the results of reaction,movement speed,directional control,maximum offset distance and endpoint travel index were smaller in the patient group than the healthy control group(P<0.05).To conclude,patients with idiopathic normal pressure hydrocephalus exhibit overall postural control deficits,and impaired reaction and execution abilities make these patients unable to make timely and accurate motor responses in the face of disturbances from internal or external sources,resulting in postural instability and increasing the risk of falls.
9.Mechanisms by which microgravity causes osteoporosis
Dejian XIANG ; Xiaoyuan LIANG ; Shenghong WANG ; Changshun CHEN ; Cong TIAN ; Zhenxing YAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(10):2132-2140
BACKGROUND:The imbalance between bone resorption and bone formation in microgravity environments leads to significant bone loss in astronauts.Current research indicates that bone loss under microgravity conditions is the result of the combined effects of various cells,tissues,and systems. OBJECTIVE:To review different biological effects of microgravity on various cells,tissues,or systems,and summarize the mechanisms by which microgravity leads to the development of osteoporosis. METHODS:Databases such as PubMed,Web of Science,and the Cochrane Database were searched for relevant literature from 2000 to 2023.The inclusion criteria were all articles related to tissue engineering studies and basic research on osteoporosis caused by microgravity.Ultimately,85 articles were included for review. RESULTS AND CONCLUSION:(1)In microgravity environment,bone marrow mesenchymal stem cells tend to differentiate more into adipocytes rather than osteoblasts,and hematopoietic stem cells in this environment are more inclined to differentiate into osteoclasts,reducing differentiation into the erythroid lineage.At the same time,microgravity inhibits the proliferation and differentiation of osteoblasts,promotes apoptosis of osteoblasts,alters cell morphology,and reduces the mineralization capacity of osteoblasts.Microgravity significantly increases the number and activity of osteoclasts.Microgravity also hinders the differentiation of osteoblasts into osteocytes and promotes the apoptosis of osteocytes.(2)In a microgravity environment,the body experiences changes such as skeletal muscle atrophy,microvascular remodeling,bone microcirculation disorders,and endocrine disruption.These changes lead to mechanical unloading in the bone microenvironment,insufficient blood perfusion,and calcium cycle disorders,which significantly impact the development of osteoporosis.(3)At present,the mechanism by which microgravity causes osteoporosis is relatively complex.A deeper study of these physiological mechanisms is crucial to ensuring the health of astronauts during long-term space missions,and provides a theoretical basis for the prevention and treatment of osteoporosis.
10.Effect of wogonin on nerve injury in rats with diabetic cerebral infarction
Huanhuan WANG ; Panpan LIANG ; Jinshui YANG ; Shuxian JIA ; Jiajia ZHAO ; Yuanyuan CHEN ; Qian XUE ; Aixia SONG
Chinese Journal of Tissue Engineering Research 2025;29(11):2327-2333
BACKGROUND:Wogonin is a flavonoid extracted from the root of Scutellaria baicalensis.Previous studies have shown that baicalein has protective effects against cerebral ischemia-reperfusion injury,and can also reduce blood sugar and complications in diabetic mice,but its role and mechanism in diabetic cerebral infarction remain unclear. OBJECTIVE:To explore the effect of wogonin on nerve injury in rats with diabetic cerebral infarction and its mechanism. METHODS:Sprague-Dawley rats were randomly divided into six groups:control group,model group,low-dose wogonin group,medium-dose wogonin group,high-dose wogonin group,and high-dose wogonin+Ras homolog gene family member A(RhoA)activator group.Except for the control group,the other rats were established with diabetes and cerebral ischemia models using intraperitoneal injection of streptozotocin and middle cerebral artery occlusion.Low,medium-and high-dose wogonin groups were intragastrically given 10,20,40 mg/kg wogonin,respectively;high-dose wogonin+RhoA activator group was intragastrically given 40 mg/kg wogonin and intraperitoneally injected 10 mg/kg lysophosphatidic acid;control group and model group were given the same amount of normal saline once a day for 7 consecutive days.Rats in each group were evaluated for neurological deficits and their blood glucose levels were measured after the last dose.TTC staining was applied to detect the volume of cerebral infarction.Hematoxylin-eosin staining was applied to observe pathological changes in brain tissue.ELISA kit was applied to detect tumor necrosis factor-α,interleukin-6,malondialdehyde,and superoxide dismutase levels in brain tissue.Western blot was applied to detect the protein expression of RhoA and Rho-associated protein kinase(ROCK)2 in brain tissue. RESULTS AND CONCLUSION:Compared with the control group,the neuronal structure of rats in the model group was severely damaged,with cell necrosis and degeneration,the neurological deficit score,blood glucose level,and infarct volume were significantly elevated(P<0.05),the levels of tumor necrosis factor-α,interleukin-6,and malondialdehyde,and the protein expression of RhoA and ROCK2 in brain tissue were significantly increased(P<0.05),and the superoxide dismutase level was decreased(P<0.05).Compared with the model group,the low-,medium-,and high-dose wogonin groups showed improved neuronal damage,reduced cell degeneration and necrosis,a significant reduction in neurological deficit score,blood glucose level,infarct volume,and the levels of tumor necrosis factor-α,interleukin-6,and malondialdehyde,and the protein expression of RhoA and ROCK2 in brain tissue,and an increase in the superoxide dismutase level(P<0.05).Compared with the high-dose wogonin group,the high-dose wogonin+RhoA activator group significantly weakened the improvement in the above indexes of rats with diabetic cerebral infarction(P<0.05).To conclude,wogonin can improve the blood glucose level in rats with diabetic cerebral infarction,reduce cerebral infarction and nerve injury,and its mechanism may be related to the inhibition of RhoA/ROCK signaling pathway.

Result Analysis
Print
Save
E-mail