1.Cold stimulation regulates lipid metabolism and the secretion of exosomes from subcutaneous adipose tissue in mice.
Shuo KE ; Li XU ; Rui-Xue SHI ; Jia-Qi WANG ; Le CUI ; Yuan JI ; Jing LI ; Xiao-Hong JIANG
Acta Physiologica Sinica 2025;77(2):231-240
Cold has been a long-term survival challenge in the evolutionary process of mammals. In response to cold stress, in addition to brown adipose tissue (BAT) dissipating energy as heat through glucose and lipid oxidation to maintain body temperature, cold stimulation can strongly activate thermogenesis and energy expenditure in beige fat cells, which are widely distributed in the subcutaneous layer. However, the effects of cold stimulation on other tissues and systemic lipid metabolism remain unclear. Our previous research indicated that, under cold stress, BAT not only produces heat but also secretes numerous exosomes to mediate BAT-liver crosstalk. Whether subcutaneous fat has a similar mechanism is still unknown. Therefore, this study aimed to investigate the alterations in lipid metabolism across various tissues under cold exposure and to explore whether subcutaneous fat regulates systemic glucose and lipid metabolism via exosomes, thereby elucidating the regulatory mechanisms of lipid metabolism homeostasis under physiological stress. RT-qPCR, Western blot, and H&E staining methods were used to investigate the physiological changes in lipid metabolism in the serum, liver, epididymal white adipose tissue, and subcutaneous fat of mice under cold stimulation. The results revealed that cold exposure significantly enhanced the thermogenic activity of subcutaneous adipose tissue and markedly increased exosome secretion. These exosomes were efficiently taken up by hepatocytes, where they profoundly influenced hepatic lipid metabolism, as evidenced by alterations in the expression levels of key genes involved in lipid synthesis and catabolism pathways. This study has unveiled a novel mechanism by which subcutaneous fat regulates lipid metabolism through exosome secretion under cold stimulation, providing new insights into the systemic regulatory role of beige adipocytes under cold stress and offering a theoretical basis for the development of new therapeutic strategies for obesity and metabolic diseases.
Animals
;
Lipid Metabolism/physiology*
;
Mice
;
Exosomes/metabolism*
;
Cold Temperature
;
Subcutaneous Fat/physiology*
;
Thermogenesis/physiology*
;
Adipose Tissue, Brown/metabolism*
;
Male
2.Effect of TBL1XR1 Mutation on Cell Biological Characteristics of Diffuse Large B-Cell Lymphoma.
Hong-Ming FAN ; Le-Min HONG ; Chun-Qun HUANG ; Jin-Feng LU ; Hong-Hui XU ; Jie CHEN ; Hong-Ming HUANG ; Xin-Feng WANG ; Dan GUO
Journal of Experimental Hematology 2025;33(2):423-430
OBJECTIVE:
To investigate the effect of TBL1XR1 mutation on cell biological characteristics of diffuse large B-cell lymphoma (DLBCL).
METHODS:
The TBL1XR1 overexpression vector was constructed and DNA sequencing was performed to determine the mutation status. The effect of TBL1XR1 mutation on apoptosis of DLBCL cell line was detected by flow cytometry and TUNEL fluorescence assay; CCK-8 assay was used to detect the effect of TBL1XR1 mutation on cell proliferation; Transwell assay was used to detect the effect of TBL1XR1 mutation on cell migration and invasion; Western blot was used to detect the effect of TBL1XR1 mutation on the expression level of epithelial-mesenchymal transition (EMT) related proteins.
RESULTS:
The TBL1XR1 overexpression plasmid was successfully constructed. The in vitro experimental results showed that TBL1XR1 mutation had no significant effect on apoptosis of DLBCL cells. Compared with the control group, TBL1XR1 mutation enhanced cell proliferation, migration and invasion of DLBCL cells. TBL1XR1 gene mutation significantly increased the expression of N-cadherin protein, while the expression of E-cadherin protein decreased.
CONCLUSION
TBL1XR1 mutation plays a role in promoting tumor cell proliferation, migration and invasion in DLBCL. TBL1XR1 could be considered as a potential target for DLBCL therapy in future research.
Humans
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
Cell Proliferation
;
Mutation
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Apoptosis
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition
;
Cell Movement
;
Repressor Proteins/genetics*
;
Nuclear Proteins/genetics*
;
Cadherins/metabolism*
3.High-dose estrogen impairs demethylation of H3K27me3 by decreasing Kdm6b expression during ovarian hyperstimulation in mice.
Quanmin KANG ; Fang LE ; Xiayuan XU ; Lifang CHEN ; Shi ZHENG ; Lijun LOU ; Nan JIANG ; Ruimin ZHAO ; Yuanyuan ZHOU ; Juan SHEN ; Minhao HU ; Ning WANG ; Qiongxiao HUANG ; Fan JIN
Journal of Zhejiang University. Science. B 2025;26(3):269-285
Given that ovarian stimulation is vital for assisted reproductive technology (ART) and results in elevated serum estrogen levels, exploring the impact of elevated estrogen exposure on oocytes and embryos is necessary. We investigated the effects of various ovarian stimulation treatments on oocyte and embryo morphology and gene expression using a mouse model and estrogen-treated mouse embryonic stem cells (mESCs). Female C57BL/6J mice were subjected to two types of conventional ovarian stimulation and ovarian hyperstimulation; mice treated with only normal saline served as controls. Hyperstimulation resulted in high serum estrogen levels, enlarged ovaries, an increased number of aberrant oocytes, and decreased embryo formation. The messenger RNA (mRNA)-sequencing of oocytes revealed the dysregulated expression of lysine-specific demethylase 6b (Kdm6b), which may be a key factor indicating hyperstimulation-induced aberrant oocytes and embryos. In vitro, Kdm6b expression was downregulated in mESCs treated with high-dose estrogen; treatment with an estrogen receptor antagonist could reverse this downregulated expression level. Furthermore, treatment with high-dose estrogen resulted in the upregulated expression of histone H3 lysine 27 trimethylation (H3K27me3) and phosphorylated H2A histone family member X (γ-H2AX). Notably, knockdown of Kdm6b and high estrogen levels hindered the formation of embryoid bodies, with a concomitant increase in the expression of H3K27me3 and γ-H2AX. Collectively, our findings revealed that hyperstimulation-induced high-dose estrogen could impair the demethylation of H3K27me3 by reducing Kdm6b expression. Accordingly, Kdm6b could be a promising marker for clinically predicting ART outcomes in patients with ovarian hyperstimulation syndrome.
Female
;
Mice
;
Demethylation/drug effects*
;
Embryonic Stem Cells
;
Estrogens/administration & dosage*
;
Gene Expression/drug effects*
;
Histones/metabolism*
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Mice, Inbred C57BL
;
Oocytes
;
Ovary/drug effects*
;
Reproductive Techniques, Assisted
;
Animals
4.Phenotypic and pathogenic variant analysis of an X-linked dominant inherited non-syndromic hearing loss pedigree.
Ziyu ZHAI ; Hongen XU ; Le WANG ; Xiaodan ZHU ; Yuan ZHANG ; Ling LI ; Xiaosai ZHANG ; Tingxian LI ; Kaixi WANG ; Fanglei YE
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(6):570-577
Objective:X-linked non-syndromic hearing loss is an extremely rare type of hearing impairment. This study conducted a phenotypic and genetic analysis of a family with X-linked dominant inheritance to explore the causes of hearing loss. Methods:Clinical data were collected from a patient with non-syndromic hearing loss who visited the Otorhinolaryngology Department of the First Affiliated Hospital of Zhengzhou University in June 2023. Phenotypic and genetic analyses were performed on family members, including audiometric tests, whole-exome sequencing, and PCR-Sanger sequencing verification. Audiological assessments comprised pure-tone audiometry, impedance audiometry, auditory brainstem response, and otoacoustic emission tests. Results:The affected individuals in this pedigree have X-linked dominant non-syndromic deafness caused by mutations in the SMPX gene. The proband, along with their mother and maternal grandmother, exhibit varying degrees of sensorineural hearing loss. Whole-exome sequencing revealed a novel pathogenic variant, NM_014332.3: c. 133-2A>C, in the SMPX gene in the proband. Sanger sequencing confirmed that the proband, proband's mother, and grandmother all carried this pathogenic variant. Conclusion:This study reports a novel pathogenic variant in the SMPX gene, providing additional medical evidence for the diagnosis and treatment of X-linked dominant inherited non-syndromic hearing loss. It enriches the mutation spectrum of the SMPX gene.
Humans
;
Pedigree
;
Mutation
;
Phenotype
;
Male
;
Hearing Loss, Sensorineural/genetics*
;
Exome Sequencing
;
Female
;
Adult
;
Hearing Loss/genetics*
;
Evoked Potentials, Auditory, Brain Stem
;
Muscle Proteins
5.Advancements in CRISPR/Cas systems for disease treatment.
Yangsong XU ; Hao LE ; Qinjie WU ; Ning WANG ; Changyang GONG
Acta Pharmaceutica Sinica B 2025;15(6):2818-2844
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is an adaptive immune system present in most bacteria and archaea, protecting them from infection by exogenous genetic elements. Due to its simplicity, cost-effectiveness, and precise gene editing capabilities, CRISPR/Cas technology has emerged as a promising tool for treating diseases. The continuous refinement of derivative systems has further broadened its scope in disease treatment. Nevertheless, the heterogeneous physiopathological nature of diseases and variations in disease onset sites pose significant challenges for in vivo applications of CRISPR systems. The efficiency of CRISPR systems in disease treatment is directly influenced by the performance of the delivery system. Additionally, concerns such as off-target effects present crucial hurdles in the clinical implementation of CRISPR systems. This review provides a comprehensive overview of the development of CRISPR systems, vector technologies, and their applications in disease treatment, while also addressing the challenges encountered in clinical settings. Furthermore, future research directions are outlined to pave the way for advancements in CRISPR-based therapies.
6.Analysis of Serum Metabolic Biomarkers in Adult Patients with Kashin-Beck Disease and Degenerative Osteoarthritis in Qinghai Province.
Jia le XU ; Qiang LI ; Chuan LU ; Xin ZHOU ; Yan Mei ZHAO ; Jian Ling WANG ; Ji Quan LI ; Li MA ; Zhi Jun ZHAO ; Ke Wen LI
Biomedical and Environmental Sciences 2025;38(9):1173-1177
7.Chronic Postsurgical Pain Among Patients with Preoperative COVID-19: An Ambispective Cohort Study
Lu CHE ; Jiawen YU ; Di JIN ; Xue BAI ; Yi WANG ; Yuelun ZHANG ; Li XU ; Le SHEN ; Yuguang HUANG
Medical Journal of Peking Union Medical College Hospital 2024;15(2):344-350
9.Biomechanical features of posterior"Y"osteotomy and fixation in treatment of ankylosing spondylitis based on finite element simulation analysis
Le ZHANG ; Zhenhua CAO ; Yunfeng ZHANG ; Yangyang XU ; Feng JIN ; Baoke SU ; Lidong WANG ; Xing WANG ; Ling TONG ; Qinghua LIU ; Yuan FANG ; Lirong SHA ; Haiyan WANG ; Xiaohe LI ; Zhijun LI
Chinese Journal of Tissue Engineering Research 2024;28(12):1842-1848
BACKGROUND:Ankylosing spondylitis is a progressive inflammation of spinal stiffness deformity caused by tissue ossification and fibrosis.The posture of ankylosing spondylitis patients is abnormal and their activities are limited that minor injuries can lead to thoracolumbar fractures.Traditional medical image observation limits doctors'preoperative decision planning and postoperative disease prevention for ankylosing spondylitis treatment. OBJECTIVE:Based on the spinal model of ankylosing spondylitis patients before and after posterior spinal cancellous ossification osteotomy("Y"osteotomy for short),to explore the biomechanical changes of"Y"osteotomy and fixation in the treatment of ankylosing spondylitis. METHODS:Based on the preoperative and postoperative CT images of an ankylosing spondylitis patient who went to the Second Affiliated Hospital of Inner Mongolia Medical University,a three-dimensional spine model(T11-S1)before and after"Y"osteotomy(L3 osteotomy)was reconstructed in Mimics 19.0 software.A 7.5 Nm torque was applied to the top of T11 vertebral body to simulate the movement of the spine under six conditions:flexion,extension,left bending,right bending,left rotation and right rotation.Finally,the range of motion of each vertebral body,the stress of each intervertebral disc,and the stress of the screw rod system were simulated. RESULTS AND CONCLUSION:(1)After"Y"type osteotomy and posterior fixation,the range of motion of all vertebrae in the spine decreased,and the loss rate of upper vertebrae was large(L1:77.95%).(2)The maximum stress of the spinal intervertebral disc before operation occurred at the L1-L2 segment(0.55 MPa),and the maximum stress of the spinal intervertebral disc after operation occurred at the T11-T12 segment(0.50 MPa),and the stress of intervertebral disc below T12 was far less than that before operation.(3)The maximum stress of the screw rod system(166.67 MPa)occurred in the upper and middle segments of the rod body and the root of the pedicle screw.(4)In conclusion,the"Y"type posterior fixation operation enhances the stability of the spine and reduces the range of motion of the spine.The vertebral body decompression of the fixed segment is great and the stress-shielding phenomenon of the lower vertebral body is significant.The stiffness of the rod body and the stress concentration area of the pedicle screw should be strengthened to avoid the fracture of the rod caused by stress fatigue.
10.Design and application of an extracorporeal membrane oxygenation-specific line fixation device
Xuechao ZHANG ; Shuyuan QIAN ; Le WANG ; Jiagui ZHAO ; Jing WANG ; Baoqun XU ; Wei WANG
Chinese Critical Care Medicine 2024;36(9):989-991
Extracorporeal membrane oxygenation (ECMO) is an important treatment for extracorporeal cardiopulmonary life support for clinically critical patients. Currently, ECMO tubing is commonly fixed by tie-wraps or tourniquets, which have shortcomings such as easy loosening and potential damage to the tubing. Improper fixation of the catheter can lead to a series of adverse events, such as accidental disconnection of the tubing, rupture of the tubing, tubing folding, and air ingress into the tubing. In order to overcome the above problems, the research team of Zhongda Hospital, Southeast University invented a device for ECMO line fixation and obtained a national utility model patent of China (patent number: ZL 2019 2 2282849.3). The tool is mainly composed of several devices, including a line fixation clamp, a clip fixation device, and a base plate, which is uniquely designed and easy to operate. During ECMO therapy, this device ensures effective stabilization of the ECMO tubing, preventing unexpected incidents due to catheter loosening and facilitating the observation of ECMO catheter insertion markings. Pipeline can be effectively fixed to avoid the occurrence of accidents due to the loosening of the catheter, and at the same time, it is convenient to observe the placement scale of the ECMO catheter. The novelty and uniqueness of the fixation device materials also effectively prevent the occurrence of pressure injuries during its use.

Result Analysis
Print
Save
E-mail