1.Research on mechanism of Wenyang Huazhuo Tongluo formula inhibiting HIF-1a/Foxm1/smad3 pathway to improve pulmonary microvascular injury of systemic sclerosis
Bo BIAN ; Qing MIAO ; Fan-Wu WU ; Yi-Ling FAN ; Jin-Li KONG ; Hua BIAN ; Kai LI
Chinese Pharmacological Bulletin 2024;40(11):2119-2123
Aim To investigate the molecular mecha-nisms of the Wenyang Huazhuo Tongluo formula in in-hibiting endothelial-to-mesenchymal transition(En-doMT)of pulmonary microvascular endothelial cells and improving pulmonary microvascular injury in sys-temic sclerosis(SSc).Methods Pulmonary micro-vascular endothelial cells were cultured with serum from SSc patients to establish SSc pulmonary microvas-cular endothelial cells.A hypoxia model was estab-lished in SSc pulmonary microvascular endothelial cells using liquid paraffin sealing,and the cells were treated with the Wenyang Huazhuo Tongluo formula or HIF-1a inhibitor KC7F2.Western blot was used to detect the protein expression levels of VE-cadherin,CD31,vimen-tin,HIF-1α,Foxm1,smad3,Tie-1,and vWF.ELISA was used to measure the concentrations of E-selectin and ICAM-1 in cell culture medium.The luciferase re-porter gene system was used to detect the promoter ac-tivity of the Foxm1 gene.Results Compared to the control group,the levels of VE-cadherin,CD31,HIF-1α,Foxm1,smad3,Tie-1,and vWF significantly de-creased under hypoxic condition,while the levels of vi-mentin,E-selectin,and ICAM-1 significantly in-creased.In addition,the cell morphology exhibited a distinct"spindle-like"myoblast morphology.Treat-ment with the Wenyang Huazhuo Tongluo formula or KC7F2 reversed these changes in protein expression levels and cell morphology induced by hypoxia.Con-clusion The Wenyang Huazhuo Tongluo formula im-proves pulmonary microvascular injury in SSc by inhib-iting the HIF-1a/Foxm1/smad3 pathway-mediated En-doMT of pulmonary microvascular endothelial cells.
2.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
3.Wnt-mediated HDAC5 Regulation during Endothelial Differentiation of iPS Cells
Qi-Kai TANG ; Yu-Qing WANG ; Fei-Yu ZHANG ; Hao-Peng WU ; Wan-Yi ZHANG ; Tao LI
Chinese Journal of Biochemistry and Molecular Biology 2024;40(6):838-847
HDAC(histone deacetylase)is a class of epigenetic modifying enzymes that can deacetylate proteins by altering the acetylation status of histones in the nucleus,regulating promoter activation levels,and thereby affecting downstream gene expression.However,expression changes of HDACs during endo-thelial differentiation are still unclear.This study used a three-stage method to induce human induced pluripotent stem cells(hiPSCs)to differentiate into endothelial cells,and qRT-PCR was used to detect the expression changes of class I HDAC(HDAC1,2)and class Ⅱ HDAC(HDAC4,5)genes.It was found that HDAC5 exhibits significant expression changes during endothelial differentiation.It is downreg-ulated by 90%during the mesodermal differentiation stage(P<0.01),upregulated by 3.7-fold during the vascular precursor stage(P<0.01),and subsequently downregulated by 70%during the late stage of endothelial differentiation(P<0.01).Immunoblotting experiments further confirmed that HDAC5 under-goes periodic expression changes during endothelial differentiation.Mechanistic studies have shown that HDAC5 downregulation during the differentiation stage of the mesoderm is mediated by Wnt signaling.CHIR99021 treatment and overexpression of Wnt3a can activate the Wnt signaling pathway,leading to HDAC5 downregulation.Inhibiting the Wnt signaling pathway through IWP-2 promotes the recovery of HDAC5 expression.In addition,it was found that HDAC5 is mainly localized in the nucleus,and IWP-2 restores HDAC5 expression,but it remains in the cytoplasm.Further research suggests that downregu-lation of HDAC5 during mesodermal differentiation may contribute to the expression of the mesodermal marker BraT.Treatment with the HDAC inhibitor BML210 can promote early mesodermal differentiation,interfere with endothelial differentiation of vascular precursor cells,and enhance late-stage endothelial differentiation.In conclusion,HDAC5 displays a stage-specific expression during endothelial differentia-tion,and Wnt signaling activation is the main mechanism regulating the downregulation of HDAC5 during the mesoderm stage.
4.A Retrospective Study of the Effect of Spinopelvic Parameters on Fatty Infiltration in Paraspinal Muscles in Patients With Lumbar Spondylolisthesis
Jia-Chen YANG ; Jia-Yu CHEN ; Yin DING ; Yong-Jie YIN ; Zhi-Ping HUANG ; Xiu-Hua WU ; Zu-Cheng HUANG ; Yi-Kai LI ; Qing-An ZHU
Neurospine 2024;21(1):223-230
Objective:
The effect on fat infiltration (FI) of paraspinal muscles in degenerative lumbar spinal diseases has been demonstrated except for spinopelvic parameters. The present study is to identify the effect of spinopelvic parameters on FI of paraspinal muscle (PSM) and psoas major muscle (PMM) in patients with degenerative lumbar spondylolisthesis.
Methods:
A single-center, retrospective cross-sectional study of 160 patients with degenerative lumbar spondylolisthesis (DLS) and lumbar stenosis (LSS) who had lateral full-spine x-ray and lumbar spine magnetic resonance imaging was conducted. PSM and PMM FIs were defined as the ratio of fat to its muscle cross-sectional area. The FIs were compared among patients with different pelvic tilt (PT) and pelvic incidence (PI), respectively.
Results:
The PSM FI correlated significantly with pelvic parameters in DLS patients, but not in LSS patients. The PSM FI in pelvic retroversion (PT > 25°) was 0.54 ± 0.13, which was significantly higher in DLS patients than in normal pelvis (0.41 ± 0.14) and pelvic anteversion (PT < 5°) (0.34 ± 0.12). The PSM FI of DLS patients with large PI ( > 60°) was 0.50 ± 0.13, which was higher than those with small ( < 45°) and normal PI (0.37 ± 0.11 and 0.36 ± 0.13). However, the PSM FI of LSS patients didn’t change significantly with PT or PI. Moreover, the PMM FI was about 0.10–0.15, which was significantly lower than the PSM FI, and changed with PT and PI in a similar way of PSM FI with much less in magnitude.
Conclusion
FI of the PSMs increased with greater pelvic retroversion or larger pelvic incidence in DLS patients, but not in LSS patients.
5.A Retrospective Study of the Effect of Spinopelvic Parameters on Fatty Infiltration in Paraspinal Muscles in Patients With Lumbar Spondylolisthesis
Jia-Chen YANG ; Jia-Yu CHEN ; Yin DING ; Yong-Jie YIN ; Zhi-Ping HUANG ; Xiu-Hua WU ; Zu-Cheng HUANG ; Yi-Kai LI ; Qing-An ZHU
Neurospine 2024;21(1):223-230
Objective:
The effect on fat infiltration (FI) of paraspinal muscles in degenerative lumbar spinal diseases has been demonstrated except for spinopelvic parameters. The present study is to identify the effect of spinopelvic parameters on FI of paraspinal muscle (PSM) and psoas major muscle (PMM) in patients with degenerative lumbar spondylolisthesis.
Methods:
A single-center, retrospective cross-sectional study of 160 patients with degenerative lumbar spondylolisthesis (DLS) and lumbar stenosis (LSS) who had lateral full-spine x-ray and lumbar spine magnetic resonance imaging was conducted. PSM and PMM FIs were defined as the ratio of fat to its muscle cross-sectional area. The FIs were compared among patients with different pelvic tilt (PT) and pelvic incidence (PI), respectively.
Results:
The PSM FI correlated significantly with pelvic parameters in DLS patients, but not in LSS patients. The PSM FI in pelvic retroversion (PT > 25°) was 0.54 ± 0.13, which was significantly higher in DLS patients than in normal pelvis (0.41 ± 0.14) and pelvic anteversion (PT < 5°) (0.34 ± 0.12). The PSM FI of DLS patients with large PI ( > 60°) was 0.50 ± 0.13, which was higher than those with small ( < 45°) and normal PI (0.37 ± 0.11 and 0.36 ± 0.13). However, the PSM FI of LSS patients didn’t change significantly with PT or PI. Moreover, the PMM FI was about 0.10–0.15, which was significantly lower than the PSM FI, and changed with PT and PI in a similar way of PSM FI with much less in magnitude.
Conclusion
FI of the PSMs increased with greater pelvic retroversion or larger pelvic incidence in DLS patients, but not in LSS patients.
6.A Retrospective Study of the Effect of Spinopelvic Parameters on Fatty Infiltration in Paraspinal Muscles in Patients With Lumbar Spondylolisthesis
Jia-Chen YANG ; Jia-Yu CHEN ; Yin DING ; Yong-Jie YIN ; Zhi-Ping HUANG ; Xiu-Hua WU ; Zu-Cheng HUANG ; Yi-Kai LI ; Qing-An ZHU
Neurospine 2024;21(1):223-230
Objective:
The effect on fat infiltration (FI) of paraspinal muscles in degenerative lumbar spinal diseases has been demonstrated except for spinopelvic parameters. The present study is to identify the effect of spinopelvic parameters on FI of paraspinal muscle (PSM) and psoas major muscle (PMM) in patients with degenerative lumbar spondylolisthesis.
Methods:
A single-center, retrospective cross-sectional study of 160 patients with degenerative lumbar spondylolisthesis (DLS) and lumbar stenosis (LSS) who had lateral full-spine x-ray and lumbar spine magnetic resonance imaging was conducted. PSM and PMM FIs were defined as the ratio of fat to its muscle cross-sectional area. The FIs were compared among patients with different pelvic tilt (PT) and pelvic incidence (PI), respectively.
Results:
The PSM FI correlated significantly with pelvic parameters in DLS patients, but not in LSS patients. The PSM FI in pelvic retroversion (PT > 25°) was 0.54 ± 0.13, which was significantly higher in DLS patients than in normal pelvis (0.41 ± 0.14) and pelvic anteversion (PT < 5°) (0.34 ± 0.12). The PSM FI of DLS patients with large PI ( > 60°) was 0.50 ± 0.13, which was higher than those with small ( < 45°) and normal PI (0.37 ± 0.11 and 0.36 ± 0.13). However, the PSM FI of LSS patients didn’t change significantly with PT or PI. Moreover, the PMM FI was about 0.10–0.15, which was significantly lower than the PSM FI, and changed with PT and PI in a similar way of PSM FI with much less in magnitude.
Conclusion
FI of the PSMs increased with greater pelvic retroversion or larger pelvic incidence in DLS patients, but not in LSS patients.
7.Expert consensus on the rational application of the biological clock in stomatology research
Kai YANG ; Moyi SUN ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Wei GUO ; Songsong ZHU ; Jia-Wei ZHENG ; Jie ZHANG ; Zhijun SUN ; Jie REN ; Jiawen ZHENG ; Xiaoqiang LV ; Hong TANG ; Dan CHEN ; Qing XI ; Xin HUANG ; Heming WU ; Hong MA ; Wei SHANG ; Jian MENG ; Jichen LI ; Chunjie LI ; Yi LI ; Ningbo ZHAO ; Xuemei TAN ; Yixin YANG ; Yadong WU ; Shilin YIN ; Zhiwei ZHANG
Journal of Practical Stomatology 2024;40(4):455-460
The biological clock(also known as the circadian rhythm)is the fundamental reliance for all organisms on Earth to adapt and survive in the Earth's rotation environment.Circadian rhythm is the most basic regulatory mechanism of life activities,and plays a key role in maintaining normal physiological and biochemical homeostasis,disease occurrence and treatment.Recent studies have shown that the biologi-cal clock plays an important role in the development of oral tissues and in the occurrence and treatment of oral diseases.Since there is cur-rently no guiding literature on the research methods of biological clock in stomatology,researchers mainly conduct research based on pub-lished references,which has led to controversy about the research methods of biological clock in stomatology,and there are many confusions about how to rationally apply the research methods of circadia rhythms.In view of this,this expert consensus summarizes the characteristics of the biological clock and analyzes the shortcomings of the current biological clock research in stomatology,and organizes relevant experts to summarize and recommend 10 principles as a reference for the rational implementation of the biological clock in stomatology research.
8.Expert consensus on the evaluation and rehabilitation management of shoulder syndrome after neek dissection for oral and maxillofacial malignancies
Jiacun LI ; Moyi SUN ; Jiaojie REN ; Wei GUO ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Zhijun SUN ; Jian MENG ; Wei SHANG ; Shaoyan LIU ; Jie ZHANG ; Jicheng LI ; Yue HE ; Chunjie LI ; Kai YANG ; Zhongcheng GONG ; Qing XI ; Bing HAN ; Huaming MAI ; Yanping CHEN ; Jie ZHANG ; Yadong WU ; Chao LI ; Changming AN ; Chuanzheng SUN ; Hua YUAN ; Fan YANG ; Haiguang YUAN ; Dandong WU ; Shuai FAN ; Fei LI ; Chao XU ; Wei WEI
Journal of Practical Stomatology 2024;40(5):597-607
Neck dissection(ND)is one of the main treatment methods for oral and maxillofacial malignancies.Although ND type is in con-stant improvement,but intraoperative peal-pull-push injury of the accessory nerve,muscle,muscle membrane,fascia and ligament induced shoulder syndrome(SS)is still a common postoperative complication,combined with the influence of radiochemotherapy,not only can cause pain,stiffness,numbness,limited dysfunction of shoulder neck and arm,but also may have serious impact on patient's life quality and phys-ical and mental health.At present,there is still a lack of a systematic evaluation and rehabilitation management program for postoperative SS of oral and maxillofacial malignant tumors.Based on the previous clinical practice and the current available evidence,refer to the relevant lit-erature at home and abroad,the experts in the field of maxillofacial tumor surgery and rehabilitation were invited to discuss,modify and reach a consenusus on the etiology,assessment diagnosis,differential diagnosis,rehabilitation strategy and prevention of SS,in order to provide clinical reference.
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
10.Expert consensus on the evaluation and management of dysphagia after oral and maxillofacial tumor surgery
Xiaoying LI ; Moyi SUN ; Wei GUO ; Guiqing LIAO ; Zhangui TANG ; Longjiang LI ; Wei RAN ; Guoxin REN ; Zhijun SUN ; Jian MENG ; Shaoyan LIU ; Wei SHANG ; Jie ZHANG ; Yue HE ; Chunjie LI ; Kai YANG ; Zhongcheng GONG ; Jichen LI ; Qing XI ; Gang LI ; Bing HAN ; Yanping CHEN ; Qun'an CHANG ; Yadong WU ; Huaming MAI ; Jie ZHANG ; Weidong LENG ; Lingyun XIA ; Wei WU ; Xiangming YANG ; Chunyi ZHANG ; Fan YANG ; Yanping WANG ; Tiantian CAO
Journal of Practical Stomatology 2024;40(1):5-14
Surgical operation is the main treatment of oral and maxillofacial tumors.Dysphagia is a common postoperative complication.Swal-lowing disorder can not only lead to mis-aspiration,malnutrition,aspiration pneumonia and other serious consequences,but also may cause psychological problems and social communication barriers,affecting the quality of life of the patients.At present,there is no systematic evalua-tion and rehabilitation management plan for the problem of swallowing disorder after oral and maxillofacial tumor surgery in China.Combining the characteristics of postoperative swallowing disorder in patients with oral and maxillofacial tumors,summarizing the clinical experience of ex-perts in the field of tumor and rehabilitation,reviewing and summarizing relevant literature at home and abroad,and through joint discussion and modification,a group of national experts reached this consensus including the core contents of the screening of swallowing disorders,the phased assessment of prognosis and complications,and the implementation plan of comprehensive management such as nutrition management,respiratory management,swallowing function recovery,psychology and nursing during rehabilitation treatment,in order to improve the evalua-tion and rehabilitation of swallowing disorder after oral and maxillofacial tumor surgery in clinic.

Result Analysis
Print
Save
E-mail