1.Dimeric natural product panepocyclinol A inhibits STAT3 via di-covalent modification.
Li LI ; Yuezhou WANG ; Yiqiu WANG ; Xiaoyang LI ; Qihong DENG ; Fei GAO ; Wenhua LIAN ; Yunzhan LI ; Fu GUI ; Yanling WEI ; Su-Jie ZHU ; Cai-Hong YUN ; Lei ZHANG ; Zhiyu HU ; Qingyan XU ; Xiaobing WU ; Lanfen CHEN ; Dawang ZHOU ; Jianming ZHANG ; Fei XIA ; Xianming DENG
Acta Pharmaceutica Sinica B 2025;15(1):409-423
Homo- or heterodimeric compounds that affect dimeric protein function through interaction between monomeric moieties and protein subunits can serve as valuable sources of potent and selective drug candidates. Here, we screened an in-house dimeric natural product collection, and panepocyclinol A (PecA) emerged as a selective and potent STAT3 inhibitor with profound anti-tumor efficacy. Through cross-linking C712/C718 residues in separate STAT3 monomers with two distinct Michael receptors, PecA inhibits STAT3 DNA binding affinity and transcription activity. Molecular dynamics simulation reveals the key conformation changes of STAT3 dimers upon the di-covalent binding with PecA that abolishes its DNA interactions. Furthermore, PecA exhibits high efficacy against anaplastic large T cell lymphoma in vitro and in vivo, especially those with constitutively activated STAT3 or STAT3Y640F. In summary, our study describes a distinct and effective di-covalent modification for the dimeric compound PecA to disrupt STAT3 function.
2.Optimizing blood-brain barrier permeability in KRAS inhibitors: A structure-constrained molecular generation approach.
Xia SHENG ; Yike GUI ; Jie YU ; Yitian WANG ; Zhenghao LI ; Xiaoya ZHANG ; Yuxin XING ; Yuqing WANG ; Zhaojun LI ; Mingyue ZHENG ; Liquan YANG ; Xutong LI
Journal of Pharmaceutical Analysis 2025;15(8):101337-101337
Kirsten rat sarcoma viral oncogene homolog (KRAS) protein inhibitors are a promising class of therapeutics, but research on molecules that effectively penetrate the blood-brain barrier (BBB) remains limited, which is crucial for treating central nervous system (CNS) malignancies. Although molecular generation models have recently advanced drug discovery, they often overlook the complexity of biological and chemical factors, leaving room for improvement. In this study, we present a structure-constrained molecular generation workflow designed to optimize lead compounds for both drug efficacy and drug absorption properties. Our approach utilizes a variational autoencoder (VAE) generative model integrated with reinforcement learning for multi-objective optimization. This method specifically aims to enhance BBB permeability (BBBp) while maintaining high-affinity substructures of KRAS inhibitors. To support this, we incorporate a specialized KRAS BBB predictor based on active learning and an affinity predictor employing comparative learning models. Additionally, we introduce two novel metrics, the knowledge-integrated reproduction score (KIRS) and the composite diversity score (CDS), to assess structural performance and biological relevance. Retrospective validation with KRAS inhibitors, AMG510 and MRTX849, demonstrates the framework's effectiveness in optimizing BBBp and highlights its potential for real-world drug development applications. This study provides a robust framework for accelerating the structural enhancement of lead compounds, advancing the drug development process across diverse targets.
4.Determination concentration of methotrexate and its polyglutamates in human erythrocyte by high-performance liquid chromatographic fluorescence method
Gui-Jie ZHANG ; Ting LIAO ; Hong-Yu JIE ; Wen-Ying CHEN ; Qiang LI
The Chinese Journal of Clinical Pharmacology 2024;40(1):117-120
Objective To establish a sensitive,accurate and simple method for the determination of methotrexate and methotrexate polyglutamates(MTXPG2 and MTXPG3)in human erythrocytes.Methods A dual three element gradient liquid chromatograph with a fluorescence detector was used,the C18-WP column(20 mm ×4 mm,5μm)was used as the online SPE column,and the Athena C18-WP column(150 mm x4.6 mm,3 μm)was used as the analytical column.Erythrocyte lysate was precipitated with zinc sulphate-10%formic acid methanol(100:90,v/v),and postcolumn photo-oxidation of MTXPGs to fluorescent analytes using H2O2.The fluorescence excitation wavelength was 274 nm,the emission wavelength was 470 nm,the column temperature was 40 ℃,and the injection volume was 100 μL.The specificity,standard curve,lower limit of quantitation,precision,recovery and stability of the method were investigated.Results MTX,MTXPG2 and MTXPG3 had good linearity in the range of 12.5-400.0 nmol·L-1.The standard curve of MTX was y=763.8x-2 961.1(R2=0.999 5),and the extraction recovery rate was 60.7%-66.1%;the standard curve of MTXPG2 was y=1 017.8x-239.8(R2=0.998 4),and the extraction recovery rate was 67.2%-67.3%;the standard curve of MTXPG3 was y=1 069.1x-819.6(R2=0.999 4),the extraction recovery rate was 62.9%-70.1%.Intra-day precision RSD<8.8%,inter-day precision RSD<10.8%.Conclusion This method is accurate and reproducibility,and the online solid-phose extraction enrichment and separation of target compounds simplify the sample pretreatment steps,improve the analysis efficiency,and is suitable for detecting the concentration of MTX,MTXPG2 and MTXPG3 in erythrocytes of patients with rheumatoid arthritis.
5.Honey-processed Hedysari Radix in treatment of spleen-Qi deficiency rats based on metabonomics of the cecum contents
Yu-Jing SUN ; Qin-Jie SONG ; Yan-Jun WANG ; Tian-Tian BIAN ; Yu-Gui ZHANG ; Xian-Wei LI ; Guo-Feng LI ; Yue-Feng LI
The Chinese Journal of Clinical Pharmacology 2024;40(4):584-588
Objective To find potential biomarkers and analyzing metabolic pathways of the treatment by honey-processed Hedysari Radix,the cecal contents of rats with spleen-Qi deficiency were used as samples for analysis.Methods Sixty male SD rats were randomly divided into blank,model,experimental and control groups.The rats in other groups except the control group were carried out by using the three-factor compound modeling method of bitter-cold diarrhea,excessive exertion and hunger and satiety disorders.Experimental group was given 12.60 g·kg-1 honey-processed Hedysari Radix;control group was given 0.63 g·kg-1 lactobacillus bifidum triplex tabletsa;control and model groups received with equal volume of distilled water for a total of 15 days.Measure body weight,anal temperature,immune organ index of rats.Ultra-pressure liquid chromatography-quadrupole-exactive-mass spectrometry technology was used to measure the levels of endogenous metabolites in cecum contents.Orthogonal partial least squares discriminant analysis and database"Kyoto Encyclopedia of Genes and Genomes"were used to identify potential differential metabolites and possible metabolic pathways.Results After the intervention,the average body weight of the experimental,control,model and blank groups was(216.87±7.85),(210.96±9.03),(159.47±5.18)and(293.51±22.98)g;anal temperature was(36.14±0.48),(35.40±0.64),(34.50±0.78)and(36.61±0.34)℃;the thymus indexes were(1.19±0.20),(1.24±0.25),(0.47±0.15)and(1.31±0.21)mg·g-1;the spleen indexes were(1.95±0.33),(2.18±0.28),(1.61±0.27)and(2.29±0.24)mg·g-1.Compared with the model group,the above indexes of the experimental group and the control group were significantly increased(all P<0.01).A total of 14 potential biomarkers of Honey-processed Hedysari Radix in treating spleen-Qi deficiency syndrome were screened out in this study,which mainly involved amino acid metabolism such as tryptophan and glutamate,riboflavin metabolism and adenosine 5'-monophosphate-activated protein kinase metabolism.Conclusion Honey-processed Hedysari Radix can further protect the intestinal mucosal barrier and reduce the intestinal inflammatory response by improving the metabolic level of cecum contents in rats with spleen-Qi deficiency in cecum contents,thus exerting the effect of strengthening the spleen and tonifying the Qi.
6.Effects of radiation on pharmacokinetics
Jie ZONG ; Hai-Hui ZHANG ; Gui-Fang DOU ; Zhi-Yun MENG ; Ruo-Lan GU ; Zhuo-Na WU ; Xiao-Xia ZHU ; Xuan HU ; Hui GAN
The Chinese Journal of Clinical Pharmacology 2024;40(13):1996-2000
Radiation mainly comes from medical radiation,industrial radiation,nuclear waste and atmospheric ultraviolet radiation,etc.,radiation is divided into ionizing radiation and non-ionizing radiation.Studying the effects of ionizing and non-ionizing radiation on drug metabolism,understanding the absorption and distribution of drugs in the body after radiation and the speed of elimination under radiation conditions can provide reasonable guidance for clinical medication.This article reviews the effects of radiation on the pharmacokinetics of different drugs,elaborates the changes of different pharmacokinetics under radiation state,and discusses the reasons for the changes.
7.Study of honey-processed Hedysari Radix on the protection of intestinal mucosal barrier in rats with spleen deficiency
Mao-Mao WANG ; Qin-Jie SONG ; Zhe WANG ; Ding-Cai MA ; Yu-Gui ZHANG ; Ting LIU ; Zhuan-Hong ZHANG ; Fei-Yun GAO ; Yan-Jun WANG ; Yue-Feng LI
The Chinese Journal of Clinical Pharmacology 2024;40(15):2231-2235
Objective To explore the protective mechanism of honey-processed Hedysari Radix in regulating intestinal mucosal injury in rats with spleen qi deficiency.Methods The three-factor composite modeling method of bitter cold diarrhea,overwork and hunger and satiety disorder was used to construct a spleen qi deficiency model rats.After the model was successfully made,they were randomly divided into model group,honey-processed Hedysari Radix group and probiotic group,with 15 animals in each group.Another 15 normal rats were taken as the blank group.The honey-processed Hedysari Radix group was given 12.6 g·kg-1 water decoction of honey-processed Hedysari Radix by gavage,the probiotics group was given Bifidobacterium Lactobacillus triple viable tablets suspension at a dose of 0.625 g·kg-1,and the blank group and the model group were given the same dose of distilled water.The rats in the four groups were administered once a day for 15 days.Enzyme-linked immunosorbent assay was used to detect diamine oxidase(DAO)in serum,D-lactic acid(D-LA),secretory immunoglobulin A factor,and Western blotting was used to detect the expression levels of AMP-activated protein kinase(AMPK),zonula occludens-1(ZO-1)and occludin in colon tissues.Results The serum levels of DAO in the blank group,model group,honey-processed Hedysari Radix group and probiotic group were(138.93±9.78),(187.95±12.90),(147.21±6.92)and(166.47±3.37)pg·mL-1;the contents of D-LA were(892.23±49.17),(1 099.84±137.64),(956.56±86.04)and(989.61±51.75)μg·L-1;the contents of SIgA in colon tissues were(14.04±1.42),(11.47±2.39),(11.84±1.49)and(12.93±1.65)μg·mL-1;the relative expression levels of ZO-1 protein in colon tissues were 1.18±0.11,0.42±0.04,0.77±0.05 and 0.95±0.07;the relative expression levels of occludin protein were 1.35±0.31,0.61±0.17,1.19±0.19 and 0.88±0.13;the relative expression levels of AMPK protein were 0.91±0.02,0.35±0.09,0.74±0.08 and 0.59±0.11.Compared with the model group,there were significant differences in the serum content of DAO and D-LA,SIgA content in colon,and the content of ZO-1,occludin and AMPK protein in the honey-processed Hedysari Radix group(P<0.01,P<0.05).Conclusion Honey-processed Hedysari Radix can enhance the protective effect on the intestinal mucosa of rats with spleen qi deficiency by regulating the expression of related inflammatory cytokines,intestinal mucosal upper cell enzymes and tight junction proteins in rats with spleen qi deficiency.
8.Predicting the potential suitable areas of Platycodon grandiflorum in China using the optimized Maxent model
Yu-jie ZHANG ; Han-wen YU ; Zhao-huan ZHENG ; Chao JIANG ; Juan LIU ; Liang-ping ZHA ; Xiu-lian CHI ; Shuang-ying GUI
Acta Pharmaceutica Sinica 2024;59(9):2625-2633
italic>Platycodon grandiflorum (Jacq.) A. DC is one of the most commonly used bulk medicinal herbs. It has important value in the fields of medicine, food and cosmetics, and its market demand is increasing year by year, and it has a good development prospect. In this study, based on 403 distribution records and 8 environmental variables, we used Maxent model to predict the potential distribution of
9.Endo-beta-N-acetylglucosaminidase: Possible Functions and Mechanisms
Xin-Rong LU ; Yong-Liang TONG ; Wei-Li KONG ; Lin ZOU ; Dan-Feng SHEN ; Shao-Xian LÜ ; Rui-Jie LIU ; Shao-Xing ZHANG ; Yu-Xin ZHANG ; Lin-Lin HOU ; Gui-Qin SUN ; Li CHEN
Progress in Biochemistry and Biophysics 2024;51(5):985-999
Endo-beta-N-acetylglucosaminidase (ENGase) is widely distributed in various organisms. The first reported ENGase activity was detected in Diplococcus pneumoniae in 1971. The protein (Endo D) was purified and its peptide sequence was determined in 1974. Three ENGases (Endo F1-F3) were discovered in Flavobacterium meningosepticum from 1982 to 1993. After that, the activity was detected from different species of bacteria, yeast, fungal, plant, mice, human, etc. Multiple ENGases were detected in some species, such as Arabidopsis thaliana and Trichoderma atroviride. The first preliminary crystallographic analysis of ENGase was conducted in 1994. But to date, only a few ENGases structures have been obtained, and the structure of human ENGase is still missing. The currently identified ENGases were distributed in the GH18 or GH85 families in Carbohydrate-Active enZyme (CAZy) database. GH18 ENGase only has hydrolytic activity, but GH85 ENGase has both hydrolytic and transglycosylation activity. Although ENGases of the two families have similar (β/α)8-TIM barrel structures, the active sites are slightly different. ENGase is an effective tool for glycan detection andglycan editing. Biochemically, ENGase can specifically hydrolyze β‑1,4 glycosidic bond between the twoN-acetylglucosamines (GlcNAc) on core pentasaccharide presented on glycopeptides and/or glycoproteins. Different ENGases may have different substrate specificity. The hydrolysis products are oligosaccharide chains and a GlcNAc or glycopeptides or glycoproteins with a GlcNAc. Conditionally, it can use the two products to produce a new glycopeptides or glycoprotein. Although ENGase is a common presentation in cell, its biological function remains unclear. Accumulated evidences demonstrated that ENGase is a none essential gene for living and a key regulator for differentiation. No ENGase gene was detected in the genomes of Saccharomyces cerevisiae and three other yeast species. Its expression was extremely low in lung. As glycoproteins are not produced by prokaryotic cells, a role for nutrition and/or microbial-host interaction was predicted for bacterium produced enzymes. In the embryonic lethality phenotype of the Ngly1-deficient mice can be partially rescued by Engase knockout, suggesting down regulation of Engase might be a solution for stress induced adaptation. Potential impacts of ENGase regulation on health and disease were presented. Rabeprazole, a drug used for stomach pain as a proton inhibitor, was identified as an inhibitor for ENGase. ENGases have been applied in vitro to produce antibodies with a designated glycan. The two step reactions were achieved by a pair of ENGase dominated for hydrolysis of substrate glycoprotein and synthesis of new glycoprotein with a free glycan of designed structure, respectively. In addition, ENGase was also been used in cell surface glycan editing. New application scenarios and new detection methods for glycobiological engineering are quickly opened up by the two functions of ENGase, especially in antibody remodeling and antibody drug conjugates. The discovery, distribution, structure property, enzymatic characteristics and recent researches in topical model organisms of ENGase were reviewed in this paper. Possible biological functions and mechanisms of ENGase, including differentiation, digestion of glycoproteins for nutrition and stress responding were hypothesised. In addition, the role of ENGase in glycan editing and synthetic biology was discussed. We hope this paper may provide insights for ENGase research and lay a solid foundation for applied and translational glycomics.
10.Allergy Associated With N-glycans on Glycoprotein Allergens
Yu-Xin ZHANG ; Rui-Jie LIU ; Shao-Xing ZHANG ; Shu-Ying YUAN ; Yan-Wen CHEN ; Yi-Lin YE ; Qian-Ge LIN ; Xin-Rong LU ; Yong-Liang TONG ; Li CHEN ; Gui-Qin SUN
Progress in Biochemistry and Biophysics 2024;51(5):1023-1033
Protein as the allergens could lead to allergy. In addition, a widespread class of allergens were known as glycans of N-glycoprotein. N-glycoprotein contained oligosaccharide linked by covalent bonds with protein. Recently,studies implicated that allergy was associated with glycans of heterologous N-glycoprotein found in food, inhalants, insect toxins, etc. The N-glycan structure of N-glycoprotein allergen has exerted an influence on the binding between allergens and IgE, while the recognition and presentation of allergens by antigen-presenting cells (APCs) were also affected. Some researches showed thatN-glycan structure of allergen was remodeled by N-glycosidase, such as cFase I, gpcXylase, as binding of allergen and IgE partly decreased. Thus, allergic problems caused by N-glycoproteins could potentially be solved by modifying or altering the structure ofN-glycoprotein allergens, addressing the root of the issue. Mechanism of N-glycans associated allergy could also be elaborated through glycosylation enzymes, alterations of host glycosylation. This article hopes to provide a separate insight for glycoimmunology perspective, and an alternative strategy for clinical prevention or therapy of allergic diseases.

Result Analysis
Print
Save
E-mail