1.Study on the effect of berberine combined with fluconazole on fluconazole-tolerant Candida albcians strains
Zecheng SONG ; Shanshan MA ; Qiaoling HU ; Hua ZHONG ; Yan WANG
Journal of Pharmaceutical Practice and Service 2025;43(2):87-91
Objective To investigate the combined effect of berberine (BBR) and fluconazole (FLC) on FLC-tolerant Candida albicans in vitro. Methods The sensitivity of 8 strains of Candida albicans to FLC was assessed by determining their minimal inhibitory concentration (MIC) using broth microdilution method. FLC-tolerant strains were screened from FLC-sensitive strains by disk diffusion assay. The effect of BBR combined with FLC on FLC-tolerant Candida albicans was investigated by disk diffusion assay. Results All eight strains of Candida albicans exhibited sensitivity to FLC, with minimal inhibitory concentration (MIC50) values below 0.5 μg/ml. Strains Y0109, 9821, 7879, 7654, and 9296 displayed colony growth in the inhibition zone after 48 h of constant temperature incubation, indicating FLC tolerance. When strains Y0109 and 9821 were subjected to a combination of BBR and FLC, the number of colonies within the inhibition zone decreased progressively with the increase of BBR concentration following a 48 h constant temperature culture. The inhibition zone became clear with the increasing of BBR concentration and increased with the increase of FLC loading, which showed a dose-dependent relationship. Conclusion The BBR combined with FLC demonstrated efficacy against FLC-tolerant strains.
2.Identification of GSK3 family and regulatory effects of brassinolide on growth and development of Nardostachys jatamansi.
Yu-Yan LEI ; Zheng MA ; Jing WEI ; Wen-Bing LI ; Ying LI ; Zheng-Ming YANG ; Shao-Shan ZHANG ; Jing-Qiu FENG ; Hua-Chun SHENG ; Yuan LIU
China Journal of Chinese Materia Medica 2025;50(2):395-403
This study identified 8 members including NjBIN2 of the GSK3 family in Nardostachys jatamansi by bioinformatics analysis. Moreover, the phylogenetic tree revealed that the GKS3 family members of N. jatamansi had a close relationship with those of Arabidopsis. RT-qPCR results showed that NjBIN2 presented a tissue-specific expression pattern with the highest expression in roots, suggesting that NjBIN2 played a role in root growth and development. In addition, the application of epibrassinolide or the brassinosteroid(BR) synthesis inhibitor(brassinazole) altered the expression pattern of NjBIN2 and influenced the photomorphogenesis(cotyledon opening) and root development of N. jatamansi, which provided direct evidence about the functions of NjBIN2. In conclusion, this study highlights the roles of BIN2 in regulating the growth and development of N. jatamansi by analyzing the expression pattern and biological function of NjBIN2. It not only enriches the understanding about the regulatory mechanism of the growth and development of N. jatamansi but also provides a theoretical basis and potential gene targets for molecular breeding of N. jatamansi with improved quality in the future.
Brassinosteroids/metabolism*
;
Steroids, Heterocyclic/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Nardostachys/metabolism*
;
Plant Growth Regulators/pharmacology*
;
Plant Roots/drug effects*
3.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
4.Clinical efficacy analysis of PACS preoperative planning in percutaneous vertebroplasty for the treatment of osteoporotic vertebral compression fractures in the elderly.
Chen CHEN ; Da-Wei LI ; Zhuang-Tian MA ; Kun-Chi HUA ; Yao LI ; Yan-Qing GAO ; Chun-Lie QIU
China Journal of Orthopaedics and Traumatology 2025;38(2):114-118
OBJECTIVE:
To explore the clinical effect of personalized puncture planning before surgery using Picture Archiving and Communication System (PACS) in the treatment of osteoporotic vertebral compression fractures in the elderly.
METHODS:
A total of 69 elderly patients with osteoporotic vertebral compression fractures treated by percutaneous vertebroplasty from January 2020 20 to December 2021 with more than 1 year of follow-up were analyzed retrospectively. Thirty-four patients were individualized for preoperative planning with PACS software (observation group), including 8 males and 26 females, with a mean age of (73.30±7.96) years old;and 35 patients were treated with conventional treatment (control group), including 7 males and 28 females, with a mean age of (77.30±7.84) years old. The operation time, the amount of cement injection, cement leakage rate, bone watertight diffusion and refracture within 1 year between two groups were observed and compared. The Cobb's angle, low back pain visual analogue scale(VAS) and the modified Oswsetry disability indexes(ODI) before surgery and 1 day, 1 year after surgery were compared between two groups.
RESULTS:
Both groups successfully completed the operation without serious surgical complications, 2 refractures occurred in the control group. The operation time in the observation group was(41.9±11.9) min, which was less than that in the control group (52.7±13.6) min (P<0.05). There was no significant difference in the cement injection volume between two groups (P>0.05). Two cases of cement leakage in the observation group was less than 8 in the control group (P<0.05). The bone cement distribution index of two groups had significant difference(P<0.05). There were no significant differences between two groups in Cobb's angle of the injured vertebras and ODI before and 1 day after surgery(P>0.05), however, the comparative differences were statistically significant at 1 year after surgery(P<0.05). There was no significant difference in the VAS between two groups at each time period(P>0.05).
CONCLUSION
Using the PACS software to plan personalized puncture scheme can reduce the operation time, reduce the cement leakage rate, improve the diffusion of bone cement and longer maintain the postoperative form of vertebral body and the functional state of patients' lumbar back.
Humans
;
Male
;
Female
;
Aged
;
Vertebroplasty/methods*
;
Fractures, Compression/diagnostic imaging*
;
Spinal Fractures/diagnostic imaging*
;
Osteoporotic Fractures/diagnostic imaging*
;
Aged, 80 and over
;
Retrospective Studies
;
Radiology Information Systems
6.The addition of 5-aminolevulinic acid to HBSS protects testis grafts during hypothermic transportation: a novel preservation strategy.
Meng-Hui MA ; Pei-Gen CHEN ; Jun-Xian HE ; Hai-Cheng CHEN ; Zhen-Han XU ; Lin-Yan LV ; Yan-Qing LI ; Xiao-Yan LIANG ; Gui-Hua LIU
Asian Journal of Andrology 2025;27(4):454-463
The aim of this investigation was to determine the optimal storage medium for testicular hypothermic transportation and identify the ideal concentration for the application of the protective agent 5-aminolevulinic acid (5-ALA). Furthermore, this study aimed to explore the underlying mechanism of the protective effects of 5-ALA. First, we collected and stored mouse testicular fragments in different media, including Hank's balanced salt solution (HBSS; n = 5), Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12; n = 5), and alpha-minimum essential medium (αMEM; n = 5). Storage of testicular tissue in HBSS preserved the integrity of testicular morphology better than that in the DMEM/F12 group ( P < 0.05) and the αMEM group ( P < 0.01). Testicular fragments were subsequently placed in HBSS with various concentrations of 5-ALA (0 [control], 1 mmol l -1 , 2 mmol l -1 , and 5 mmol l -1 ) to determine the most effective concentration of 5-ALA. The 2 mmol l -1 5-ALA group ( n = 3) presented the highest positive rate of spermatogonial stem cells compared with those in the control, 1 mmol l -1 , and 5 mmol l -1 5-ALA groups. Finally, the tissue fragments were preserved in HBSS with control ( n = 3) and 2 mmol l -1 5-ALA ( n = 3) under low-temperature conditions. A comparative analysis was performed against fresh testes ( n = 3) to elucidate the underlying mechanism of 5-ALA. Gene set enrichment analysis (GSEA) for WikiPathways revealed that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was downregulated in the 2 mmol l -1 5-ALA group compared with that in the control group (normalized enrichment score [NES] = -1.57, false discovery rate [FDR] = 0.229, and P = 0.019). In conclusion, these data suggest that using 2 mmol l -1 5-ALA in HBSS effectively protected the viability of spermatogonial stem cells upon hypothermic transportation.
Male
;
Animals
;
Testis/cytology*
;
Aminolevulinic Acid/pharmacology*
;
Mice
;
Organ Preservation/methods*
;
Organ Preservation Solutions/pharmacology*
;
Cryopreservation/methods*
7.Study on Differential DNA Methylation Profiles of Patients with High-Altitude Polycythemia.
Jun-Hua JI ; Min YANG ; Yan JIANG ; Ting-Xian YANG ; Xiao-Jing MA ; Qi-Chao YIN ; Hong-Wei YIN ; Lin-Hua JI
Journal of Experimental Hematology 2025;33(2):580-586
OBJECTIVE:
To investigate the whole-genome differential methylation profile of patients with high-altitude polycythemia (HAPC).
METHODS:
In this study, a total of 20 adult male patients with HAPC were included, including 10 Tibetan and 10 Han patients. The control group consisted of 20 healthy adult males, including 10 Tibetan and 10 Han patients. Peripheral blood was collected from each group for DNA extraction and quality inspection, and DNA libraries were constructed. The differential methylation regions (DMRs) between groups were detected using reduced representation bisulfite sequencing, with enriched regions compared to those of the control group. The differential enrichment regions were selected, and the intersection of the enriched regions was associated with genes. The methylation enrichment regions that differed significantly between groups were filtered based on the number of enriched samples in the enriched regions between the groups. GO, KEGG functional, and pathway analysis were performed on the differentially associated gene sets to reveal significant differences between the patients and control groups at the functional and pathway levels.
RESULTS:
In comparison with the control group, 17 152 sites with more than 25% difference and 15 558 sites with less than -25% difference were identified in Tibetan patients. The top 5 genes with the largest methylation differences between the two groups were MCCC2, RP3-399L15.3, ZNF621, RP11-394A14.2 and SLC39A10. The top significantly different pathways annotated in the differentially expressed genes pathway was serotonergic synapse. In comparison with the control group, 2 687 CpG sites with a greater than 25% difference and 2 602 CpG sites with a less than -25% difference were identified in Han patients. The top 5 genes with the largest methylation differences between the two groups were NAA25, CORO2B, PDC, ZNF853, and MLLT10. The top significantly different pathways annotated in the differentially expressed genes pathway were glutamatergic synapse, retrograde endocannabinoid signaling, Rap1 signaling pathway and cholinergic synapse. In comparison with the control group, 3 895 CpG sites with a greater than 25% difference and 3 969 CpG sites with a less than -25% difference were identified in HAPC patients. The maximum methylation difference between the two groups could reach 78.1%, while the minimum was -42.6%. The top 5 genes with the largest methylation differences between the two groups were MCCC2, ARSJ, CTNNA3, SLC39A10, and SWAP70. The top significantly different pathways annotated in the differentially expressed genes pathway was signaling pathways regulating pluripotency of stem cells.
CONCLUSION
The occurrence of HAPC may be related to abnormal changes in DNA methylation, and methylation sites may be helpful for the early diagnosis of HAPC.
Humans
;
DNA Methylation
;
Altitude
;
Polycythemia/genetics*
;
Male
;
Adult
;
CpG Islands
8.Clinical Features, Prognostic Analysis and Predictive Model Construction of Central Nervous System Invasion in Peripheral T-Cell Lymphoma.
Ya-Ting MA ; Yan-Fang CHEN ; Zhi-Yuan ZHOU ; Lei ZHANG ; Xin LI ; Xin-Hua WANG ; Xiao-Rui FU ; Zhen-Chang SUN ; Yu CHANG ; Fei-Fei NAN ; Ling LI ; Ming-Zhi ZHANG
Journal of Experimental Hematology 2025;33(3):760-768
OBJECTIVE:
To investigate the clinical features and prognosis of central nervous system (CNS) invasion in peripheral T-cell lymphoma (PTCL) and construct a risk prediction model for CNS invasion.
METHODS:
Clinical data of 395 patients with PTCL diagnosed and treated in the First Affiliated Hospital of Zhengzhou University from 1st January 2013 to 31st December 2022 were analyzed retrospectively.
RESULTS:
The median follow-up time of 395 PTCL patients was 24(1-143) months. There were 13 patients diagnosed CNS invasion, and the incidence was 3.3%. The risk of CNS invasion varied according to pathological subtype. The incidence of CNS invasion in patients with anaplastic large cell lymphoma (ALCL) was significantly higher than in patients with angioimmunoblastic T-cell lymphoma (AITL) (P <0.05). The median overall survival was significantly shorter in patients with CNS invasion than in those without CNS involvement, with a median survival time of 2.4(0.6-127) months after diagnosis of CNS invasion. The results of univariate and multivariate analysis showed that more than 1 extranodal involvement (HR=4.486, 95%CI : 1.166-17.264, P =0.029), ALCL subtype (HR=9.022, 95%CI : 2.289-35.557, P =0.002) and ECOG PS >1 (HR=15.890, 95%CI : 4.409-57.262, P <0.001) were independent risk factors for CNS invasion in PTCL patients. Each of these risk factors was assigned a value of 1 point and a new prediction model was constructed. It could stratify the patients into three distinct groups: low-risk group (0-1 point), intermediate-risk group (2 points) and high-risk group (3 points). The 1-year cumulative incidence of CNS invasion in the high-risk group was as high as 50.0%. Further evaluation of the model showed good discrimination and accuracy, and the consistency index was 0.913 (95%CI : 0.843-0.984).
CONCLUSION
The new model shows a precise risk assessment for CNS invasion prediction, while its specificity and sensitivity need further data validation.
Humans
;
Lymphoma, T-Cell, Peripheral/pathology*
;
Prognosis
;
Retrospective Studies
;
Central Nervous System Neoplasms/pathology*
;
Neoplasm Invasiveness
;
Male
;
Female
;
Central Nervous System/pathology*
;
Middle Aged
;
Adult
9.Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.
Hong CHEN ; Gang YANG ; De-En XU ; Yu-Tong DU ; Chao ZHU ; Hua HU ; Li LUO ; Lei FENG ; Wenhui HUANG ; Yan-Yun SUN ; Quan-Hong MA
Neuroscience Bulletin 2025;41(3):374-390
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Animals
;
Autophagy/physiology*
;
Oligodendroglia/metabolism*
;
Myelin Sheath/physiology*
;
Aging/pathology*
;
Myelin Basic Protein/metabolism*
;
Cell Lineage/physiology*
;
Mice
;
Oligodendrocyte Precursor Cells
;
Mice, Inbred C57BL
;
Brain/cytology*
;
Cells, Cultured
;
Cell Count
10.Correction to: Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.
Hong CHEN ; Gang YANG ; De-En XU ; Yu-Tong DU ; Chao ZHU ; Hua HU ; Li LUO ; Lei FENG ; Wenhui HUANG ; Yan-Yun SUN ; Quan-Hong MA
Neuroscience Bulletin 2025;41(3):547-548

Result Analysis
Print
Save
E-mail