1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Investigation of an outbreak of group A human G9P [8] rotavirus infectious diarrhea among adults in Chongqing
Yang WANG ; Yuan KONG ; Ning CHEN ; Lundi YANG ; Jiang LONG ; Qin LI ; Xiaoyang XU ; Wei ZHENG ; Hong WEI ; Jie LU ; Quanjie XIAO ; Yingying BA ; Wenxi WU ; Qian XU ; Ju YAN
Shanghai Journal of Preventive Medicine 2025;37(8):663-668
ObjectiveTo investigate and analyze an outbreak of rotavirus infectious diarrhea in a prison in Chongqing Municipality, to provide a basis for adult rotavirus surveillance and prevention, and to explore the public health problems in special settings. MethodsA retrospective survey was conducted to collect and analyze data on individual cases with diarrheal disease on-site. The clinical characteristics, as well as the temporal, spatial and geographical distribution patterns of the epidemic were described. Multi-pathogen detection tests were conducted both on diarrhea cases and environmental samples, with viral genotyping performed on positive samples. A case-control analysis was performed to identify the causes of the outbreak, and an SEIR model was adopted to predict the outbreak trend and evaluate the effectiveness of interventions. ResultsA total of 65 cases were found among the inmates, with an attack rate of 2.03%. The predominant clinical manifestations included diarrhea (89.23%), watery stool (73.85%), and dehydration (18.46%). The epidemic curve indicated a “human-to-human” transmission pattern, with an average incubation period of 5‒6 days. The attack rates among chefs in the main canteen (80.00%, 8/10) and caterers (28.33%, 17/60) were significantly higher than those of other inmates (P<0.05). Multi-pathogen polymerase chain reaction (PCR) testing detected positive for group A rotavirus, with the viral genotyping identified as G9P [8] strain. Factors such as unprotected "bare-handed" food distribution among cases with diarrhea (OR=9.512, 95%CI: 4.261‒21.234) and close contact with diarrhea cases (OR=3.656, 95%CI: 1.719‒7.778) were the possible cause of the outbreak. The SEIR model (r0=5, α=0.3, β1=0.08, β2=0.04) was constructed using prison inmates as susceptible population, aiming at fitting the initial transmission trend of the outbreak, and the epidemic rate declined rapidly after intervention measures were implemented (rt≈0). ConclusionThis rare rotavirus infection diarrhea outbreak among adults in confined settings suggests that the construction of public health prevention and control systems in prison may be overlooked. Cross infection during meal processing and distribution in the canteens of such settings is likely to be the cause of the outbreak. Given the potential neglect of public heath system construction in special settings, it is imperative to enhance the surveillance and monitoring of rotavirus and other intestinal multi-pathogens among adults, as well as the construction of public health prevention and control systems in these special settings.
6.Guidelines for the diagnosis and treatment of prurigo nodularis.
Li ZHANG ; Qingchun DIAO ; Xia DOU ; Hong FANG ; Songmei GENG ; Hao GUO ; Yaolong CHEN ; Chao JI ; Chengxin LI ; Linfeng LI ; Jie LI ; Jingyi LI ; Wei LI ; Zhiming LI ; Yunsheng LIANG ; Jianjun QIAO ; Zhiqiang SONG ; Qing SUN ; Juan TAO ; Fang WANG ; Zhiqiang XIE ; Jinhua XU ; Suling XU ; Hongwei YAN ; Xu YAO ; Jianzhong ZHANG ; Litao ZHANG ; Gang ZHU ; Fei HAO ; Xinghua GAO
Chinese Medical Journal 2025;138(22):2859-2861
7.Material basis of toad oil and its pharmacodynamic effect in a mouse model of atopic dermatitis.
Yu-Yang LIU ; Xin-Wei YAN ; Bao-Lin BIAN ; Yao-Hua DING ; Xiao-Lu WEI ; Meng-Yao TIAN ; Wei WANG ; Hai-Yu ZHAO ; Yan-Yan ZHOU ; Hong-Jie WANG ; Ying YANG ; Nan SI
China Journal of Chinese Materia Medica 2025;50(1):165-177
This study aims to comprehensively analyze the material basis of toad visceral oil(hereafter referred to as toad oil), and explore the pharmacological effect of toad oil on atopic dermatitis(AD). Ultra-high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry(UHPLC-LTQ-Orbitrap-MS) and gas chromatography-mass spectrometry(GC-MS) were employed to comprehensively identify the chemical components in toad oil. The animal model of AD was prepared by the hapten stimulation method. The modeled animals were respectively administrated with positive drug(0.1% hydrocortisone butyrate cream) and low-and high-doses(1%, 10%) of toad oil by gavage. The effect of toad oil on AD was evaluated with the AD score, ear swelling rate, spleen index, and pathological section results as indicators. A total of 99 components were identified by UHPLC-LTQ-Orbitrap-MS, including 14 bufadienolides, 7 fatty acids, 6 alkaloids, 10 ketones, 18 amides, and other compounds. After methylation of toad oil samples, a total of 20 compounds were identified by GC-MS. Compared with the model group, the low-and high-dose toad oil groups showed declined AD score, ear swelling rate, and spleen index, alleviated skin lesions, and reduced infiltrating mast cells. This study comprehensively analyzes the chemical composition and clarifies the material basis of toad oil. Meanwhile, this study proves that toad oil has a good therapeutic effect on AD and is a reserve resource of traditional Chinese medicine for external use in the treatment of AD.
Animals
;
Dermatitis, Atopic/immunology*
;
Disease Models, Animal
;
Mice
;
Male
;
Gas Chromatography-Mass Spectrometry
;
Humans
;
Bufonidae
;
Oils/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Female
;
Mice, Inbred BALB C
8.Ameliorative effects of Lycii Fructus-Chrysanthemi Flos at different ratios on retinal damage in mice.
Bing LI ; Sheng GUO ; Yue ZHU ; Xue-Sen WANG ; Dan-Dan WEI ; Hong-Jie KANG ; Wen-Hua ZHANG ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(3):732-740
This study aimed to compare the ameliorative effects of Lycii Fructus and Chrysanthemi Flos at different ratios on retinal damage in mice and to elucidate the underlying mechanisms. A retinal injury model was established by intraperitoneal injection of sodium iodate(NaIO_3) solution. The mice were divided into the following groups: blank group, model group, positive drug(AREDS 2) group, low-and high-dose groups of Lycii Fructus and Chrysanthemi Flos at 1∶1, low-and high-dose groups at 3∶1, and low-and high-dose groups at 1∶3. Administration was carried out 15 days after modeling. The visual acuity of the mice was assessed using the black-and-white box test. The fundus was observed using an optical coherence tomography device, and retinal thickness was measured. HE staining was used to observe the morphology and pathological changes of the retina. The levels of oxidative factors in serum and ocular tissues were measured using assay kits. The levels of inflammatory factors in serum and ocular tissues were detected by enzyme-linked immunosorbent assay(ELISA), and the expression of Nrf2, HO-1, and NF-κB proteins in ocular tissues was analyzed by Western blot. The results showed that after administration of Lycii Fructus and Chrysanthemi Flos at different ratios, the model group showed improved retinal thinning and disordered arrangement of retinal layers, elevated content of SOD and GSH in the serum and ocular tissues, and reduced levels of MDA, TNF-α, IL-1β, and IL-6. Lycii Fructus and Chrysanthemi Flos at 1∶1 and 1∶3 showed better improvement effects. The combination significantly upregulated the expression levels of Nrf2 and HO-1 and downregulated the expression of NF-κB p65. These results indicate that Lycii Fructus and Chrysanthemi Flos at different ratios can improve retinal damage, reduce oxidative stress, and alleviate inflammation in both the body and ocular tissues of mice. The mechanism may be related to the regulation of the Nrf2/HO-1 and NF-κB signaling pathways in ocular tissues. These findings provide a theoretical basis for the clinical application of Lycii Fructus and Chrysanthemi Flos in the treatment of dry age-related macular degeneration.
Animals
;
Mice
;
Retina/injuries*
;
Male
;
Lycium/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Chrysanthemum/chemistry*
;
NF-kappa B/genetics*
;
Humans
;
Retinal Diseases/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress/drug effects*
;
Flowers/chemistry*
;
Heme Oxygenase-1/genetics*
9.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
10.Systematic review and Meta-analysis of efficacy and safety of Wumei Pills in treatment of type 2 diabetes mellitus.
Wei-Jin HUANG ; Yun-Yi YANG ; Jia-Yuan CAI ; Xiao-Xiao QU ; Yan-Ming HE ; Hong-Jie YANG
China Journal of Chinese Materia Medica 2025;50(12):3441-3451
Wumei Pills, a classic traditional Chinese medicine(TCM) formula, are widely used in the treatment of biliary ascariasis and diarrhea. In recent years, studies have shown that Wumei Pills have advantages in the treatment of type 2 diabetes mellitus(T2DM), while there are no relevant reports that systematically evaluate the efficacy of Wumei Pills in the treatment of T2DM. This study addresses this issue by systematically evaluating the efficacy and safety of Wumei Pills, aiming to provide an evidence-based basis for clinical practice. PubMed, Cochrane Library, EMbase, Web of Science, CNKI, Wanfang, and VIP were researched for the randomized controlled trial(RCT) involving Wumei Pills for the treatment of T2DM that were published from inception to September 2024. RevMan 5.3 was used for the Meta-analysis of the data. A total of 18 RCTs were included, with a total of 1 437 patients. Meta-analysis produced the following results.(1)Treatment group outperformed control group in terms of overall response rate(RR=1.28, 95%CI[1.14, 1.43], P<0.000 1), fasting blood glucose(FPG)(WMD=-0.69, 95%CI[-0.93,-0.46], P<0.000 01), two-hour postprandial plasma glucose(2hPG)(WMD=-0.74, 95%CI[-1.17,-0.31], P<0.000 7), glycated hemoglobin(HbA1c)(WMD=-0.39, 95%CI[-0.60,-0.18], P=0.000 3), high-density lipoprotein(HDL)(WMD=0.38, 95%CI[0.28, 0.48], P<0.000 01), and body mass index(BMI)(WMD=-1.41, 95%CI[-2.40,-0.42], P=0.005).(2)The two groups had comparable effects regarding total cholesterol(TC)(WMD=-0.53, 95%CI[-1.13, 0.08], P=0.09) and low-density lipoprotein(LDL)(WMD=-0.25, 95%CI[-0.56, 0.06], P=0.12).(3)Triglycerides(TG)(WMD=-0.28,95%CI [-0.59,0.03],P=0.08), sensitivity analysis showed potential reduction effect(WMD=-0.20,95%CI[-0.36,-0.04],P=0.01). Occurrence of adverse drug reaction(RR=0.43,95%CI [0.23,0.80],P=0.007), sensitivity analysis showed significant disappearance(RR=0.56,95%CI[0.26,1.22],P=0.14), suggesting that the efficacy of treatment group was not better than that of control group. The results indicate that the treatment of T2DM with Wumei Pills is greatly related to the improvement of glucose metabolism, lipid metabolism, and clinical efficacy. The findings provide a basis for clinical application of Wumei Pills in treating T2DM, while the conclusion remains to be verified by clinical studies with higher quality.
Humans
;
Diabetes Mellitus, Type 2/blood*
;
Drugs, Chinese Herbal/administration & dosage*
;
Randomized Controlled Trials as Topic
;
Blood Glucose/metabolism*
;
Hypoglycemic Agents/therapeutic use*
;
Treatment Outcome
;
Glycated Hemoglobin/metabolism*
;
Female

Result Analysis
Print
Save
E-mail