1.Molecular mechanism of Siwu Decoction in treating premature ovarian insufficiency based on mitophagy pathway modulated and mediated by estrogen receptor subtype.
Si CHEN ; Ze-Ye ZHANG ; Nan CONG ; Jiao-Jiao YANG ; Feng-Ming YOU ; Yao CHEN ; Ning WANG ; Pi-Wen ZHAO
China Journal of Chinese Materia Medica 2025;50(8):2173-2183
In this study, we explored the pharmacological effects of Siwu Decoction in treating premature ovarian insufficiency(POI) and its molecular mechanism based on the mitophagy pathway modulated and mediated by estrogen receptor(ER) subtypes. Female Balb/c mice were divided into a control group, model group, as well as high-dose and low-dose groups of Siwu Decoction. The POI mice model was constructed by intraperitoneal injection of cisplatin. The high-dose and low-dose groups of Siwu Decoction were administered intragastrically with Siwu Decoction each day for 14 days. During this period, we monitored the estrous cycle and body weight of the mice and calculated the ovarian index. The morphology of the ovaries was detected by hematoxylin-eosin(HE) staining, and the number of primordial follicles was counted. The apoptosis of the ovarian tissue was detected by TUNEL staining. The expression levels of anti-Müllerian hormone(AMH), apoptosis-associated and mitophagy-associated proteins, ER subtypes, and the expression levels of key proteins of its mediated molecular pathways were detected by Western blot and immunohistochemistry. KGN cells were divided into a control group, model group, Siwu Decoction group, and gene silencing group. The apoptosis model was induced by H_2O_2, and PTEN-induced putative kinase 1(PINK1) gene silencing was induced by siRNA transfection. The Siwu Decoction group and gene silencing group were added to the medium containing Siwu Decoction. Cell viability was detected by CCK-8 assay. Cell senescence was detected by senescence-associated-β-galactosidase. The expression levels of apoptosis-associated and mitophagy-associated proteins were detected by Western blot. The results of in vivo experiments showed that compared with the model group, the mice in the high-dose and low-dose groups of Siwu Decoction significantly recovered the rhythm of the estrous cycle, and the levels of ovarian index, number of primordial follicles, and expression of AMH, representative indexes of ovarian function, were significantly higher, suggesting that the level of ovarian function was significantly improved. The expression levels of the apoptosis-related proteins, cytochrome C(Cyt C), cysteinyl aspartate specific proteinase 3(caspase 3), B-cell lymphoma-2(Bcl-2)-associated X(Bax), and mitophagy-associated indicator(Beclin 1) were significantly decreased, and the expression levels of Bcl-2 was significantly elevated. The positive area of TUNEL was significantly reduced, suggesting that the apoptosis level of the ovaries was significantly reduced. The expression levels of PINK1, Parkin, and sequestosome 1(p62) were significantly reduced, suggesting that the level of ovarian mitophagy was significantly down-regulated. The expression levels of ERα and ERβ were significantly elevated, and the ratio of ERα/ERβ was significantly reduced. The expression levels of key proteins in the pathway, phosphoinositide 3-kinase(PI3K) and protein kinase B(Akt), were significantly reduced, suggesting that the regulation of ER subtypes and the mediation of PI3K/Akt pathway were the key mechanisms. In vitro experiments showed that compared with the model group, the proportion of senescent cells in the Siwu Decoction group was significantly reduced. Cyt C, caspase 3, Beclin 1, Parkin, and p62 were significantly reduced, which was in line with in vivo experimental results. The proportion of senescent cells and the expression level of the above proteins were further significantly reduced after PINK1 silencing. It can be seen that Siwu Decoction can regulate the expression level and proportion of ER subtypes in KGN cells, then mediate the PI3K/Akt pathway to inhibit excessive mitophagy and apoptosis, and exert therapeutic effects of POI.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mitophagy/drug effects*
;
Primary Ovarian Insufficiency/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Humans
;
Receptors, Estrogen/genetics*
;
Apoptosis/drug effects*
;
Ovary/metabolism*
;
Signal Transduction/drug effects*
;
Anti-Mullerian Hormone/genetics*
2.Exosome derived from human adipose-derived mesenchymal stem cells prevented bone loss induced by estrogen deficiency.
Chunhui SHENG ; Xiao ZHANG ; Longwei LV ; Yongsheng ZHOU
Journal of Peking University(Health Sciences) 2025;57(2):217-226
OBJECTIVE:
To investigate the effect of human adipose-derived mesenchymal stem cells (hASCs) exosomes on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) extracted from osteoporotic mice, and to evaluate the effect of hASCs exosomes on preventing bone loss induced by estrogen deficiency.
METHODS:
hASCs exosomes were extracted by ultracentrifugation. The osteoporotic mice were established by bilateral ovariectomy (OVX). BMSCs were isolated from osteo-porotic mice and cultured for further analysis. In the experimental group, these BMSCs were exposed to an osteogenic induction medium supplemented with hASCs exosomes to evaluate their potential effects on osteogenesis. In contrast, the control group was treated with the same osteogenic induction medium, but without the addition of hASCs exosomes, to serve as a baseline comparison for the study. To comprehensively assess the osteogenic differentiation of BMSCs influenced by hASCs exosomes, alkaline phosphatase (ALP) staining, ALP activity quantitative analysis and quantitative reverse transcription polymerase chain reaction (qPCR) were performed. These evaluations provided critical insights into the role of hASCs exosomes in promoting osteoblast differentiation and bone formation in osteoporotic conditions. The fluorescence labeled hASCs exosomes were injected via the tail vein to observe the biodistribution of exosomes. Two weeks after OVX, the mice were divided into three groups: The experimental group consisted of estrogen-deficient mice receiving hASCs exosome injections; the negative control group consisted of estrogen-deficient mice receiving phosphate-buffered saline (PBS) injections; and the positive control group consisted of mice that underwent Sham surgery and received PBS injections.The injections were administered once every 3 days, for a total of 8 injections. Afterward, the femurs were collected from the mice, and micro-computed tomography (micro-CT) was performed to measure bone mineral density and conduct bone morphometric analysis.
RESULTS:
hASCs exosomes were successfully extracted using ultracentrifugation. After the induction by hASCs exosomes, ALP staining and ALP activity in the BMSCs extracted from osteoporotic mice were significantly enhanced, the expression of osteogenesis related genes in BMSCs were significantly up-regulated. More trabecular bone and higher bone mineral density were observed in estrogen-deficient mice injected with hASCs exosomes compared with estrogen-deficient mice injected with PBS, and there was no significant decrease in bone mineral density compared with the Sham operation group.
CONCLUSION
hASCs exosomes promoted the osteogenic differentiation of BMSCs extracted from osteoporotic mice. hASCs exosomes prevented bone loss induced by estrogen deficiency.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Exosomes
;
Estrogens/deficiency*
;
Humans
;
Osteogenesis
;
Cell Differentiation
;
Female
;
Mice
;
Osteoporosis/prevention & control*
;
Ovariectomy
;
Adipose Tissue/cytology*
;
Cells, Cultured
3.High-dose estrogen impairs demethylation of H3K27me3 by decreasing Kdm6b expression during ovarian hyperstimulation in mice.
Quanmin KANG ; Fang LE ; Xiayuan XU ; Lifang CHEN ; Shi ZHENG ; Lijun LOU ; Nan JIANG ; Ruimin ZHAO ; Yuanyuan ZHOU ; Juan SHEN ; Minhao HU ; Ning WANG ; Qiongxiao HUANG ; Fan JIN
Journal of Zhejiang University. Science. B 2025;26(3):269-285
Given that ovarian stimulation is vital for assisted reproductive technology (ART) and results in elevated serum estrogen levels, exploring the impact of elevated estrogen exposure on oocytes and embryos is necessary. We investigated the effects of various ovarian stimulation treatments on oocyte and embryo morphology and gene expression using a mouse model and estrogen-treated mouse embryonic stem cells (mESCs). Female C57BL/6J mice were subjected to two types of conventional ovarian stimulation and ovarian hyperstimulation; mice treated with only normal saline served as controls. Hyperstimulation resulted in high serum estrogen levels, enlarged ovaries, an increased number of aberrant oocytes, and decreased embryo formation. The messenger RNA (mRNA)-sequencing of oocytes revealed the dysregulated expression of lysine-specific demethylase 6b (Kdm6b), which may be a key factor indicating hyperstimulation-induced aberrant oocytes and embryos. In vitro, Kdm6b expression was downregulated in mESCs treated with high-dose estrogen; treatment with an estrogen receptor antagonist could reverse this downregulated expression level. Furthermore, treatment with high-dose estrogen resulted in the upregulated expression of histone H3 lysine 27 trimethylation (H3K27me3) and phosphorylated H2A histone family member X (γ-H2AX). Notably, knockdown of Kdm6b and high estrogen levels hindered the formation of embryoid bodies, with a concomitant increase in the expression of H3K27me3 and γ-H2AX. Collectively, our findings revealed that hyperstimulation-induced high-dose estrogen could impair the demethylation of H3K27me3 by reducing Kdm6b expression. Accordingly, Kdm6b could be a promising marker for clinically predicting ART outcomes in patients with ovarian hyperstimulation syndrome.
Female
;
Mice
;
Demethylation/drug effects*
;
Embryonic Stem Cells
;
Estrogens/administration & dosage*
;
Gene Expression/drug effects*
;
Histones/metabolism*
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Mice, Inbred C57BL
;
Oocytes
;
Ovary/drug effects*
;
Reproductive Techniques, Assisted
;
Animals
4.Regulatory effects of moxibustion at "Guanyuan" (CV4) on extragonadal estrogen and estrogen receptors in ovariectomized rats.
Qingchen ZHOU ; Xinyan GAO ; Kun LIU ; Bing ZHU
Chinese Acupuncture & Moxibustion 2025;45(12):1770-1776
OBJECTIVE:
To observe the regulatory effects of moxibustion at "Guanyuan" (CV4) on the synthesis of extragonadal estradiol (E2) and the expression of estrogen receptor (ER) in ovariectomized rats, aiming to explore the mechanism of moxibustion treatment for perimenopausal syndrome.
METHODS:
Forty-eight SD female rats of SPF grade were randomly divided into a sham-operation group, a model group and a moxibustion group, with 16 rats in each group. The model group and the moxibustion group underwent bilateral ovariectomy by the back incision method. Ten days after surgery, moxibustion was applied at "Guanyuan" (CV4) in the moxibustion group, 30 min each time, once a day for 10 days. After intervention, in the 3 groups, the body mass and uterus weight were measured; the serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH) and E2, as well as the skin and hypothalamus levels of E2 were detected by ELISA; the mRNA expression of aromatase (P450arom) in the skin and hypothalamus was detected by real-time PCR; the expression of ERα and ERβ in the hypothalamus, skin, and uterus was observed by immunofluorescence staining, and the density of positive cells was calculated using the Aipathwell digital pathology image analysis software.
RESULTS:
Compared with the sham-operation group, the body mass was increased (P<0.01) and the uterus weight was decreased (P<0.001) in the model group. Compared with the model group, the body mass was decreased in the moxibustion group (P<0.01). Compared with the sham-operation group, in the model group, the serum, hypothalamus and skin levels of E2 were decreased (P<0.01, P<0.05), while the serum levels of FSH and LH were increased (P<0.01); the expression of ERα and ERβ in the skin, hypothalamus and uterus was decreased (P<0.05, P<0.001). Compared with the model group, in the moxibustion group, the serum levels of E2 and LH, as well as the hypothalamus and skin levels of E2 were increased (P<0.05, P<0.01); the mRNA expression of P450arom, as well as the expression of ERα and ERβ in the skin and hypothalamus were increased (P<0.05).
CONCLUSION
Moxibustion at "Guanyuan" (CV4) reduces the body mass of ovariectomized rats by enhancing the synthesis of extragonadal E2 and increasing the expression of ER in the skin and hypothalamus, yet it does not alleviate uterine atrophy.
Animals
;
Female
;
Moxibustion
;
Rats
;
Ovariectomy
;
Acupuncture Points
;
Rats, Sprague-Dawley
;
Humans
;
Receptors, Estrogen/genetics*
;
Estrogens/metabolism*
;
Estradiol/metabolism*
;
Hypothalamus/metabolism*
;
Follicle Stimulating Hormone/blood*
;
Aromatase/genetics*
;
Luteinizing Hormone/blood*
;
Skin/metabolism*
5.Premature ovarian insufficiency: When ovaries retire early.
Stella Rizalina Sasha SUGIANTO ; Lisa WEBBER ; Farah SAFDAR HUSAIN ; Veronique VIARDOT-FOUCAULT ; Sadhana NADARAJAH ; Jiin Ying LIM ; Ee Shien TAN ; Tze Tein YONG ; Rukshini PUVANENDRAN
Annals of the Academy of Medicine, Singapore 2025;54(3):178-191
INTRODUCTION:
Premature ovarian insufficiency (POI) refers to loss of ovarian activity before the age 40 years. POI has significant detrimental effects on health (infertility, cardiovascular diseases, type 2 diabetes, reduced bone density, dementia), well-being and longevity. This summary is a practical toolkit for health-care professionals (HCPs) looking after women with POI.
METHOD:
A workgroup comprising specialists in gynaecology, reproductive medicine, endocrinology, genetics and family medicine reviewed relevant guidelines and literature on POI to establish recom-mendations for the diagnosis and management of POI in Singapore.
RESULTS:
A summary to assist HCPs manage POI was produced, outlining: (1) the aetiology and conse-quences of POI; (2) making the diagnosis; (3) hormone therapy (HT) prescribing options including for those with additional medical conditions; (4) counselling women with POI about HT; and (5) long-term management of POI.
CONCLUSION
Timely diagnosis and management of POI is vital to prevent long-term adverse consequences, except infertility. HT is the mainstay of treatment and there are no alternatives as effective. Contraindications are very few; estrogen-sensitive cancer is the main contraindication, and caution in prescribing may be needed with established coexisting cardiovascular disease. Estrogen dosage is higher than when treating normal menopause, and as a result, the patient might require more progestogen for endometrial protection. Minimising cardiovascular risk factors by following a healthy lifestyle is important. POI is a significant public health issue and it is imperative that women have affordable access to appropriate HT. Large-scale research on POI in Asian women is needed.
Humans
;
Primary Ovarian Insufficiency/drug therapy*
;
Female
;
Estrogen Replacement Therapy
;
Singapore
;
Adult
6.Effect of Eucommiae Cortex extract mediated by ERβ/JNK pathway on learning and memory ability of APP/PS1 double-transgenic mice.
Yue LI ; Li-Li ZHANG ; Can ZHAO ; Hong-Mei ZHAO ; Yan WANG ; Jin-Lei FU ; Jie ZHANG ; Ning ZHANG ; Hong-Dan XU
China Journal of Chinese Materia Medica 2025;50(2):285-293
To study the ameliorative effect of Eucommiae Cortex extract on spatial learning disabilities in APP/PS1 double-transgenic mice and explore its relationship with estrogen receptor β(ERβ)/c-Jun N-terminal kinase(JNK) signaling pathway, sixty 3-month-old male APP/PS1 mice were randomly divided into a model group, an anti-brain failure capsule group(0.585 g·kg~(-1)), a donepezil hydrochloride group(0.65 mg·kg~(-1)), and a Eucommiae Cortex extract group(1.3 g·kg~(-1)), and 15 C57BL/6 mice of the same genetic background were set as WT control group. The learning and memory ability of mice was assessed by the Morris water maze test(MWM), the passive avoidance test(PAT), and the novel object recognition test(NOR). The histomorphological and cellular ultrastructural features of the hippocampal region of the mice were observed by hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM); the molecular docking validation of the key active ingredients and the key targets was performed by using AutoDock Vina software, and the immunohistochemical method(IHC) was used to detect the ERβ expression in the dentate gyrus(DG) area of mouse hippocampus. Western blot(WB) was utilized to detect the expression of ERβ, p-JNK, and JNK in mouse hippocampal area. Compared with those in the WT control group, the results of behavioral experiments showed that the latency of the mice in the model group was significantly increased, the number of platform traversals, and the target quadrant residence time were significantly decreased in the MWM. The evasion latency was significantly reduced, and the number of errors was significantly increased in the PAT. The index of recognition of novel objects was significantly reduced in the NOR. The results of HE staining indicated that the hippocampal area of mice in the model group showed a decrease in the number of neurons, disorganization of pyramidal cell arrangement, nucleus consolidation, and other changes. TEM results showed that some neuronal nuclei in the hippocampal area had a consolidated state, slightly thickened and aberrant nuclear membranes, and fewer intracytoplasmic nidus bodies; the IHC results showed that the expression of ERβ in the hippocampal DG area of the mice was reduced. The WB results showed that the ERβ expression in the hippocampal tissue was decreased, and the p-JNK/JNK level was elevated. Compared with the model group, the Eucommiae Cortex extract group showed a significant decrease in latency, and increase in number of platform traversals and target quadrant residence time in the MWM, a significant increase in evasion latency and decrease in number of errors in the PAT, and a significant increase in the index of recognition of novel objects in the NOR. In addition, there was an increase in the number of neurons in the hippocampal area of mice. The pyramidal cells tended to be arranged in an orderly manner; the nuclei of neurons in the hippocampal area were in a better state; the expression of ERβ in the hippocampal DG area of the mice was elevated; the expression of ERβ in the hippocampal tissue was elevated, and the level of p-JNK/JNK was reduced. The effects of donepezil hydrochloride group and anti-brain failure capsule on APP/PS1 mice in terms of behavioral, HE, and TEM indexes were similar to those of Eucommiae Cortex extract, and there was no significant difference between donepezil hydrochloride group and the model group in IHC and WB experiments, and the results of molecular docking indicated that the estrogen-like components in Eucommiae Cortex extract were tightly bound to ERβ. In conclusion, the binding of Eucommiae Cortex extract to estrogen receptors, regulation of ERβ expression, and activation of ERβ/JNK signaling pathway may be one of the key mechanisms by which it improves the learning and memory ability of APP/PS1 mice.
Animals
;
Male
;
Mice
;
Mice, Transgenic
;
Memory/drug effects*
;
Mice, Inbred C57BL
;
Estrogen Receptor beta/genetics*
;
Eucommiaceae/chemistry*
;
Alzheimer Disease/psychology*
;
Amyloid beta-Protein Precursor/metabolism*
;
Presenilin-1/metabolism*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hippocampus/metabolism*
;
Maze Learning/drug effects*
;
Learning/drug effects*
7.Mechanism of Hedyotis diffusa-Scutellaria barbata D. Don for treatment of primary liver cancer: analysis with network pharmacology, molecular docking and in vitro validation.
Meng XU ; Lina CHEN ; Jinyu WU ; Lili LIU ; Mei SHI ; Hao ZHOU ; Guoliang ZHANG
Journal of Southern Medical University 2025;45(1):80-89
OBJECTIVES:
To investigate the active ingredients in Hedyotis diffusa-Scutellaria barbata D. Don and the main biological processes and signaling pathways mediating their inhibitory effect on primary hepatocellular carcinoma (HCC).
METHODS:
The core intersecting genes of HCC and the two drugs were screened from TCMSP, Uniport, Genecards, and String databases using Cytoscape software, and GO and KEGG enrichment analyses of the intersecting genes were conducted. Molecular docking between the active ingredients of the drugs and the core genes was carried out using Pubcham, RCSB and Autoduckto to identify the active ingredients with the highest binding energy, whose inhibitory effect on HepG2 cells was verifies using CCK-8 assay, flow cytometry and Western blotting.
RESULTS:
TP53 and ESR1 were identified as the core genes of HCC and the two drugs. GO and KEGG analyses showed that the two genes were mainly involved in regulation of apoptotic signaling pathway, cell population proliferation, methane raft, and protein kinase activity, and participated in the signaling pathways of apoptosis, proteoglycans in cancer, PI3K Akt signaling pathway, and hepatitis B. Molecular docking studies showed that the active ingredients of the drugs could be docked with TP53 and ESR1 genes under natural conditions, and ursolic acid had the highest binding energy to ESR1 (-4.98 kcal/mol). The results of CCK-8 assay, flow cytometry and Western blotting all demonstrated significant inhibitory effect of ursolic acid on HepG2 cells.
CONCLUSIONS
The inhibitory effect of Hedyotis diffusa-scutellariae barbatae on HCC is mediated by multiple active ingredients in the two drugs.
Humans
;
Molecular Docking Simulation
;
Liver Neoplasms/drug therapy*
;
Hep G2 Cells
;
Network Pharmacology
;
Carcinoma, Hepatocellular/drug therapy*
;
Hedyotis/chemistry*
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Tumor Suppressor Protein p53/metabolism*
;
Apoptosis/drug effects*
;
Estrogen Receptor alpha/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
8.Down-regulation of ACADM-mediated lipotoxicity inhibits invasion and metastasis of estrogen receptor-positive breast cancer cells.
Jiahao LI ; Ruiting XIAN ; Rong LI
Journal of Southern Medical University 2025;45(6):1163-1173
OBJECTIVES:
To investigate the effect of downregulation of medium-chain acyl-coenzyme A dehydrogenase (ACADM) on invasion and migration of estrogen receptor-positive breast cancer cells and the underlying mechanism.
METHODS:
The Kaplan-Meier Plotter database was used to analyze the ACADM expression levels in breast cancer and normal tissues and their association with patient prognosis. Human breast cancer MCF-7 and T47D cell lines with lentivirus-mediated ACADM knockdown were established, and their in situ tumor formation and metastasis after tail vein injection were evaluated in nude mice. The MCF-7 and T47D cells with ACADM knockdown and their unmodified parental cells were examined with oil-red O staining assay, ROS assay, mitochondrial respiratory chain function assay before and after treatments with ROS scavenger, Elamipretide (a cardiolipin oxidation inhibitor) or SC79 (an AKT activator), and the changes in migration and invasion abilities of the treated cells were analyzed with Transwell invasion assay and Boyden chamber assay. Western blotting was used to detect protein expression levels of related signaling pathways in the treated cells.
RESULTS:
ACADM overexpression was associated with a significantly shorter overall survival of breast cancer patients. In MCF-7 and T47D cells, ACADM knockdown resulted in downregulation of N calnexin, vimentin, p-P13K and p-AKT proteins, increased levels of free fatty acids and reactive oxygen species, lowered activities of mitochondrial respiratory chain complex III and V, and reduced mitochondrial inner phospholipids. ACADM knockdown significantly decreased the invasive capacity of the cells, which were obviously reversed by treatment with ROS scavenger, Elamipretide, and SC79.
CONCLUSIONS
Down-regulation of ACADM inhibits migration and invasion ability of estrogen receptor-positive breast cancer cells by lowering lipotoxicity and impairing mitochondrial function through the ROS/PI3K/AKT pathway.
Humans
;
Breast Neoplasms/metabolism*
;
Female
;
Mice, Nude
;
Down-Regulation
;
Neoplasm Invasiveness
;
Animals
;
Mice
;
Receptors, Estrogen/metabolism*
;
MCF-7 Cells
;
Cell Movement
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Acyl-CoA Dehydrogenase/genetics*
;
Signal Transduction
;
Neoplasm Metastasis
;
Proto-Oncogene Proteins c-akt/metabolism*
9.G protein-coupled estrogen receptor alleviates lung injury in mice with exertional heat stroke by inhibiting ferroptosis.
Ziwei HAN ; Jiansong GUO ; Xiaochen WANG ; Zhi DAI ; Chao LIU ; Feihu ZHOU
Chinese Critical Care Medicine 2025;37(3):268-274
OBJECTIVE:
To investigate whether the G protein-coupled estrogen receptor (GPER) can attenuates acute lung injury in mice with exertional heat stroke (EHS) by inhibiting ferroptosis.
METHODS:
Sixty SPF-grade male C57BL/6 mice were randomly divided into four groups: normal control group (control group), EHS model group (EHS group), dimethyl sulfoxide (DMSO) solvent group (EHS+DMSO group), and GPER-specific agonist G1 group (EHS+G1 group), with 15 mice in each group. All mice underwent 14 days of adaptive training at 24-26 centigrade before modeling, and the EHS model was established using a high-temperature treadmill device. After successful modeling, the mice were allowed to cool naturally at room temperature. In the EHS+G1 group, 40 μg/kg of the GPER-specific agonist G1 was slowly injected intraperitoneally immediately after modeling. In the EHS+DMSO group, 40 μg/kg of DMSO was slowly injected intraperitoneally immediately after modeling. The control group received no treatment. Five hours after modeling, abdominal aortic blood was collected, and lung tissues were harvested after euthanasia. The lung coefficient was calculated to evaluate lung injury. Lung histopathological changes were observed under a light microscope after hematoxylin-eosin (HE) staining, and a lung histopathological score was assigned. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA), and Fe2+ in lung tissue. Immunofluorescence was used to detect the expression of glutathione peroxidase 4 (GPX4). Real-time polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of GPX4, ferroportin 1 (FPN1), and ferritin heavy chain 1 (FTH1). Western blotting was performed to detect the protein expression of GPX4, FPN1, and FTH1.
RESULTS:
Compared with the control group, the lung coefficient and lung histopathological score were significantly increased in the EHS group. HE staining showed significant thickening and unevenness of the alveolar septa and alveolar walls, partial alveolar collapse, and extensive erythrocyte, inflammatory cell, and plasma-like material extravasation in the alveolar spaces. Serum levels of TNF-α, IL-1β, MDA, and Fe2+ were significantly elevated. Immunofluorescence staining showed a significant decrease in GPX4-positive expression in lung tissue. Western blotting and RT-PCR showed significantly reduced protein and mRNA expression of GPX4, FPN1, and FTH1 in lung tissue. Compared with the EHS group, the EHS+G1 group showed a significant reduction in lung coefficient and lung histopathological score [lung coefficient (mg/g): 3.9±0.1 vs. 4.6±0.3, lung histopathological score: 4.2±0.2 vs. 6.9±0.2, both P < 0.05]. HE staining revealed reduced severity of lung tissue fluid extravasation, inflammatory infiltration, decreased hemorrhage, and less severe alveolar structural damage. Serum levels of TNF-α, IL-1β, MDA, and Fe2+ were significantly reduced [TNF-α (ng/L): 44.3±0.2 vs. 64.6±0.3, IL-1β (ng/L): 69.3±0.4 vs. 97.8±0.2, MDA (nmol/L): 2.8±0.3 vs. 3.6±0.5, Fe2+ (nmol/L): 0.021±0.004 vs. 0.028±0.004, all P < 0.05]. Immunofluorescence staining showed a significant decrease in GPX4-positive expression in lung tissue (fluorescence intensity: 35.53±2.41 vs. 16.45±0.31, P < 0.05). RT-PCR and Western blotting showed significantly increased mRNA and protein expression of GPX4, FPN1, and FTH1 in lung tissue [mRNA expression: GPX4 mRNA (2-ΔΔCt): 0.44±0.05 vs. 0.09±0.01, FPN1 mRNA (2-ΔΔCt): 0.77±0.17 vs. 0.42±0.14, FTH1 mRNA (2-ΔΔCt): 0.75±0.04 vs. 0.58±0.01; protein expression: GPX4/β-actin: 0.96±0.11 vs. 0.24±0.04, FPN1/β-actin: 1.26±0.21 vs. 0.44±0.14, FTH1/β-actin: 0.27±0.12 vs. 0.15±0.07; all P < 0.05]. However, there were no statistically significant differences in any of the above indicators between the EHS+DMSO group and the EHS group.
CONCLUSION
Activation of GPER can attenuate EHS-related lung injury in mice, and its mechanism may be related to the activation of the GPX4 signaling pathway and inhibition of ferroptosis.
Animals
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Heat Stroke/metabolism*
;
Receptors, G-Protein-Coupled
;
Ferroptosis
;
Receptors, Estrogen
;
Acute Lung Injury/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-1beta/metabolism*
;
Lung Injury
;
Lung/metabolism*
10.Tianxiangdan (TXD) alleviates myocardial ischemia reperfusion-induced ferroptosis through the activation of estrogen receptor alpha (ERα).
Yuanjia YUE ; Yu LI ; Xing RONG ; Zhao JI ; Huimin WANG ; Liang CHEN ; Lin JIANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):102-110
Tianxiangdan (TXD), a traditional Chinese herbal remedy, demonstrates efficacy in mitigating myocardial ischemia-reperfusion (I/R)-induced damage. This study employed network pharmacology to evaluate the therapeutic targets and mechanisms of TXD in treating I/R. High-performance liquid chromatography-mass spectrometry (HPLC-MS) identified 86 compounds in TXD. Network pharmacological analysis predicted potential target genes and their modes of action. Cardiac function, ischaemic ST changes, lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD) activity, myocardial fiber, and infarct size were assessed using in vivo and in vitro I/R injury models. Estrogen receptor alpha (ERα) protein expression and estradiol (E2) levels were measured to confirm TXD's impact on estrogen levels and ERα expression. To examine if TXD reduces I/R injury through ERα, an AZD group (300 nmol·L-1 AZD9496 and 15% TXD serum) was compared to a TXD group (15% TXD serum). The study hypothesized that TXD upregulates the ERα-mediated iron metamorphosis pathway. I/R injury-induced ferroptosis was identified using a Fer-1 group (1.0 μmol·L-1 Fer-1 and 15% TXD serum) to elucidate the potential association between ferroptosis and ERα proteins. A DCFH-DA probe detected reactive oxygen species (ROS) and Fe2+, while Western blotting assessed target protein expression. Both in vitro and in vivo experiments demonstrated that TXD attenuated I/R injury by reducing elevated ST-segment levels, improving cardiac injury biomarkers (LDH, MDA, and SOD), alleviating pathological features, and preventing I/R-induced loss of cell viability in vitro. The effects and mechanisms of TXD on I/R injury-associated ferroptosis were investigated using I/R-induced H9c2 cells. The TXD group showed significantly decreased ROS and Fe2+ levels, while the AZ group (treated with AZD9496) exhibited increased levels. The TXD group demonstrated enhanced expression of ERα and glutathione peroxidase 4 (GPX4), with reduced levels of P53 protein and ferritin-heavy polypeptide 1 (FTH1). The AZ group exhibited contrasting effects on these expression levels. The literature indicated a novel connection between ERα and ferroptosis. TXD activates the ERα signaling pathway, promoting protection against I/R-induced myocardial cell ferroptosis. This study provides evidence supporting TXD use for myocardial ischemia treatment, particularly in older female patients who may benefit from its therapeutic outcomes.
Animals
;
Ferroptosis/drug effects*
;
Estrogen Receptor alpha/genetics*
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Mice
;
Humans
;
Mice, Inbred C57BL
;
Estradiol/metabolism*

Result Analysis
Print
Save
E-mail