1.Herbal Textual Research on Spatholobi Caulis in Famous Classical Formulas
Yajie XIANG ; Yangyang LIU ; Jian FENG ; Chun YAO ; Erwei HAO ; Wenlan LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):238-248
Through consulting herbal medicine, medical books, and local chronicles from past dynasties to modern times, this paper systematically researched Spatholobi Caulis from name, origin, producing areas, harvesting, processing, usage, quality evaluation, functions and indications, providing a reference for the development and utilization of famous classical formulas containing Spatholobi Caulis. According to the research, Spatholobi Caulis was first recorded in the Annals of Shunning Prefecture from the Qing dynasty. It was originally a medicinal herb commonly used in Shunning, Yunnan, and was named from the red juice resembling chicken blood that flowed out after the vein was cut off. The mainstream original plants of each dynasty were Kadsura heteroclita and Spatholobus suberectus. Among them, K. heteroclita mainly focused on dispersing blood stasis and unblocking meridians, mainly treating rheumatic pain and injuries caused by falls or blows, and it is mostly used as the raw material of Jixueteng ointments. S. suberectus was commonly used as decoction pieces in decoction, which had the functions of promoting blood circulation and replenishing blood, activating meridians and collaterals, and mainly used for treating anemia, irregular menstruation, and rheumatic bone pain. The production area of Spatholobi Caulis recorded in the Qing dynasty was Yunnan. Currently, the main production area of S. suberectus is Guangxi, while the main production area of K. interior is Yunnan. In the Qing dynasty, the usage of Spatholobi Caulis was an individual prescription with other herbs before making ointments, which was usually composed of the juice of it, safflower, angelica, and glutinous rice. But in modern times, Spatholobi Caulis is mostly sliced and dried for use. The quality of Spatholobi Caulis is often determined by the number of reddish-brown concentric circles on the cut surface, with a higher number indicating better quality. Additionally, the presence of resinous secretions is also considered desirable. Based on the research findings, it is suggested that when developing famous classical formulas containing Spatholobi Caulis, the choice of the primary source should be S. suberectus or K. heteroclita, taking into consideration the therapeutic effects of the formula. It is also recommended that the latest plant classification be referenced in the next edition of Chinese Pharmacopoeia, adjusting the primary source of Kadsurae Caulis to K. heteroclita to avoid confusion caused by inconsistent original names, and the functions adjust to promote Qi circulation and relieve pain, disperse blood stasis and unblock collaterals, treating injuries caused by falls and bruises.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
8.Innovation and application of traditional Chinese medicine dispensing promoted through integration of whole-process data elements.
Huan-Fei YANG ; Si-Yu LI ; Chen-Qian YU ; Jian-Kun WU ; Fang LIU ; Li-Bin JIANG ; Chun-Jin LI ; Xiang-Fei SU ; Wei-Guo BAI ; Hua-Qiang ZHAI ; Shi-Yuan JIN ; Yong-Yan WANG
China Journal of Chinese Materia Medica 2025;50(11):3189-3196
As a new type of production factor that can empower the development of new quality productivity, the data element is an important engine to promote the high quality development of the industry. Traditional Chinese medicine(TCM) dispensing is the most basic work of TCM clinical pharmacy, and its quality directly affects the clinical efficacy of TCM. The integration of data elements and TCM dispensing can stimulate the innovation and vitality of the TCM dispensing industry and promote the high-quality and sustainable development of the industry. A large-scale, detailed, and systematic study on TCM dispensing was conducted. The innovative practice path of data fusion construction in the whole process of TCM dispensing was investigated by integrating the digital resources "nine full activities" of TCM dispensing, creating the digital dictionary of "TCM clinical information data elements", and exploring innovative applications of TCM dispensing driven by data and technology, so as to promote the standardized, digital, and intelligent development of TCM dispensing in medical health services. The research content of this project was successfully selected as the second batch of "Data element×" typical cases of National Data Administration in 2024, which is the only selected case in the field of TCM.
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal
;
Humans
9.Intramedullary administration of tranexamic acid reduces bleeding in proximal femoral nail antirotation surgery for intertrochanteric fractures in elderly individuals: A randomized controlled trial.
Xiang-Ping LUO ; Jian PENG ; Ling ZHOU ; Hao LIAO ; Xiao-Chun JIANG ; Xiong TANG ; Dun TANG ; Chao LIU ; Jian-Hui LIU
Chinese Journal of Traumatology 2025;28(3):201-207
PURPOSE:
Intertrochanteric fractures undergoing proximal femoral nail antirotation (PFNA) surgery are associated with significant hidden blood loss. This study aimed to explore whether intramedullary administration of tranexamic acid (TXA) can reduce bleeding in PFNA surgery for intertrochanteric fractures in elderly individuals.
METHODS:
A randomized controlled trial was conducted from January 2019 to December 2022. Patients aged over 60 years with intertrochanteric fractures who underwent intramedullary fixation surgery with PFNA were eligible for inclusion and grouped according to random numbers. A total of 249 patients were initially enrolled, of which 83 were randomly allocated to the TXA group and 82 were allocated to the saline group. The TXA group received intramedullary perfusion of TXA after the bone marrow was reamed. The primary outcomes were total peri-operative blood loss and post-operative transfusion rate. The occurrence of adverse events was also recorded. Continuous data was analyzed by unpaired t-test or Mann-Whitney U test, and categorical data was analyzed by Pearson Chi-square test.
RESULTS:
The total peri-operative blood loss (mL) in the TXA group was significantly lower than that in the saline group (577.23 ± 358.02 vs. 716.89 ± 420.30, p = 0.031). The post-operative transfusion rate was 30.67% in the TXA group and 47.95% in the saline group (p = 0.031). The extent of post-operative deep venous thrombosis and the 3-month mortality rate were similar between the 2 groups.
CONCLUSION
We observed that intramedullary administration of TXA in PFNA surgery for intertrochanteric fractures in elderly individuals resulted in less peri-operative blood loss and decreased transfusion rate, without any adverse effects, and is, thus, recommended.
Humans
;
Tranexamic Acid/administration & dosage*
;
Hip Fractures/surgery*
;
Male
;
Aged
;
Female
;
Fracture Fixation, Intramedullary/adverse effects*
;
Blood Loss, Surgical/prevention & control*
;
Antifibrinolytic Agents/administration & dosage*
;
Aged, 80 and over
;
Bone Nails
;
Middle Aged
;
Blood Transfusion/statistics & numerical data*
10.Characteristics of Gut Microbiota Changes and Their Relationship with Infectious Complications During Induction Chemotherapy in AML Patients.
Quan-Lei ZHANG ; Li-Li DONG ; Lin-Lin ZHANG ; Yu-Juan WU ; Meng LI ; Jian BO ; Li-Li WANG ; Yu JING ; Li-Ping DOU ; Dai-Hong LIU ; Zhen-Yang GU ; Chun-Ji GAO
Journal of Experimental Hematology 2025;33(3):738-744
OBJECTIVE:
To investigate the characteristics of gut microbiota changes in patients with acute myeloid leukemia (AML) undergoing induction chemotherapy and to explore the relationship between infectious complications and gut microbiota.
METHODS:
Fecal samples were collected from 37 newly diagnosed AML patients at four time points: before induction chemotherapy, during chemotherapy, during the neutropenic phase, and during the recovery phase. Metagenomic sequencing was used to analyze the dynamic changes in gut microbiota. Correlation analyses were conducted to assess the relationship between changes in gut microbiota and the occurrence of infectious complications.
RESULTS:
During chemotherapy, the gut microbiota α-diversity (Shannon index) of AML patients exhibited significant fluctuations. Specifically, the diversity decreased significantly during induction chemotherapy, further declined during the neutropenic phase (P < 0.05, compared to baseline), and gradually recovered during the recovery phase, though not fully returning to baseline levels.The abundances of beneficial bacteria, such as Firmicutes and Bacteroidetes, gradually decreased during chemotherapy, whereas the abundances of opportunistic pathogens, including Enterococcus, Klebsiella, and Escherichia coli, progressively increased.Analysis of the dynamic changes in gut microbiota of seven patients with bloodstream infections revealed that the bloodstream infection pathogens could be detected in the gut microbiota of the corresponding patients, with their abundance gradually increasing during the course of infection. This finding suggests that bloodstream infections may be associated with opportunistic pathogens originating from the gut microbiota.Compared to non-infected patients, the baseline samples of infected patients showed a significantly lower relative abundance of Bacteroidetes (P < 0.05). Regression analysis indicated that Bacteroidetes abundance is an independent predictive factor for infectious complications (P < 0.05, OR =13.143).
CONCLUSION
During induction chemotherapy in AML patients, gut microbiota α-diversity fluctuates significantly, and the abundance of opportunistic pathogens increase, which may be associated with bloodstream infections. Patients with lower baseline Bacteroidetes abundance are more prone to infections, and its abundance can serve as an independent predictor of infectious complications.
Humans
;
Gastrointestinal Microbiome
;
Leukemia, Myeloid, Acute/microbiology*
;
Induction Chemotherapy
;
Feces/microbiology*
;
Male
;
Female
;
Middle Aged

Result Analysis
Print
Save
E-mail