1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Singapore consensus statements on the management of obstructive sleep apnoea.
Leong Chai LEOW ; Chuen Peng LEE ; Sridhar VENKATESWARAN ; Michael Teik Chung LIM ; Oon Hoe TEOH ; Ruth CHANG ; Yam Cheng CHEE ; Khai Beng CHONG ; Ai Ping CHUA ; Joshua GOOLEY ; Hong Juan HAN ; Nur Izzianie KAMARUDDIN ; See Meng KHOO ; Lynn Huiting KOH ; Shaun Ray Han LOH ; Kok Weng LYE ; Mark IGNATIUS ; Yingjuan MOK ; Jing Hao NG ; Thun How ONG ; Chu Qin PHUA ; Rui Ya SOH ; Pei Rong SONG ; Adeline TAN ; Alvin TAN ; Terry TAN ; Jenny TANG ; David TAY ; Jade TAY ; Song Tar TOH ; Serene WONG ; Chiang Yin WONG ; Mimi YOW
Annals of the Academy of Medicine, Singapore 2025;54(10):627-643
INTRODUCTION:
Obstructive sleep apnoea (OSA) is common in Singapore, with moderate to severe OSA affecting around 30% of residents. These consensus statements aim to provide scientifically grounded recommendations for the management of OSA, standar-dise the management of OSA in Singapore and promote multidisciplinary collaboration.
METHOD:
An expert panel, which was convened in 2024, identified several areas of OSA management that require guidance. The expert panel reviewed the current literature and developed consensus statements, which were later independently voted on using a 3-point Likert scale (agree, neutral or disagree). Consensus (total ratings of agree and neutral) was set a priori at ≥80% agreement. Any statement not reaching consensus was excluded.
RESULTS:
The final consensus included 49 statements that provide guidance on the screening, diagnosis and management of adults with OSA. Additionally, 23 statements on the screening, diagnosis and management of paediatric OSA achieved consensus. These 72 consensus statements considered not only the latest clinical evidence but also the benefits and harms, resource implications, feasibility, acceptability and equity impact of the recommendations.
CONCLUSION
The statements presented in this paper aim to guide clinicians based on the most updated evidence and collective expert opinion from sleep specialists in Singapore. These recommendations should augment clinical judgement rather than replace it. Management decisions should be individualised, taking into account the patient's clinical characteristics, as well as patient and caregiver concerns and preferences.
Humans
;
Sleep Apnea, Obstructive/diagnosis*
;
Singapore
;
Consensus
;
Adult
3.Identification of novel pathogenic variants in genes related to pancreatic β cell function: A multi-center study in Chinese with young-onset diabetes.
Fan YU ; Yinfang TU ; Yanfang ZHANG ; Tianwei GU ; Haoyong YU ; Xiangyu MENG ; Si CHEN ; Fengjing LIU ; Ke HUANG ; Tianhao BA ; Siqian GONG ; Danfeng PENG ; Dandan YAN ; Xiangnan FANG ; Tongyu WANG ; Yang HUA ; Xianghui CHEN ; Hongli CHEN ; Jie XU ; Rong ZHANG ; Linong JI ; Yan BI ; Xueyao HAN ; Hong ZHANG ; Cheng HU
Chinese Medical Journal 2025;138(9):1129-1131
4.Mechanism of Chaishao Kaiyu Decoction in ameliorating hippocampal neuroinflammation in depressed rats based on complement component C3/C3aR pathway.
Ying-Juan TANG ; Hai-Peng GUO ; Man-Shu ZOU ; Yuan-Shan HAN ; Jun-Cheng LIU ; Yu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(1):1-9
This study investigated the mechanism of Chaishao Kaiyu Decoction in improving hippocampal neuroinflammation in depressed rats based on complement component 3(C3)/C3 receptor(C3aR). A total of 60 SD rats were randomly divided into a blank group, a model group, high, medium, and low dose groups of Chaishao Kaiyu Decoction, and a positive drug group, with 10 rats in each group. Except for the blank group, chronic unpredictable mild stress(CUMS) was used to construct depression models in other groups. Sucrose preference, open-field experiment, forced swimming, and water maze were used to detect the changes in depression-like behavior in each group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum inflammatory factor level in rats, and hematoxylin-eosin(HE) staining and Nissl staining were employed to observe the pathological damage of hippocampal neurons. Golgi-Cox staining was used to observe the dendritic spine damage of hippocampal neurons, and immunofluorescence and Western blot were utilized to detect the expression of microglial marker Iba-1 and C3/C3aR protein in the hippocampus of rats. The behavioral results showed that compared with the model group, Chaishao Kaiyu Decoction could significantly strengthen the sugar water preference, increase the distance and number of voluntary activities, shorten the immobility time in forced swimming and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant. ELISA results showed that the content of inflammatory factors in the hippocampus of depressed rats was significantly higher than that of the blank group, and the content of inflammatory factors decreased significantly after the intervention of Chaishao Kaiyu Decoction. In addition, Chaishao Kaiyu Decoction could relieve pathological damage such as cell swelling and loose arrangement of hippocampus tissue. In the Western blot experiment, the expression levels of C3 and C3aR proteins in the model group were higher than those in the blank group, while the expression of C3 and C3aR in Chaishao Kaiyu Decoction could be down-regulated. Immunofluorescence results showed that compared with the model group, the fluorescence intensity of microglia marker Iba-1 decreased significantly after the intervention of Chaishao Kaiyu Decoction and positive drugs. The antidepressant effect of Chaishao Kaiyu Decoction may be related to the down-regulation of C3/C3aR signaling pathway-related proteins, thus alleviating hippocampal inflammation.
Animals
;
Hippocampus/metabolism*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Male
;
Depression/metabolism*
;
Complement C3/metabolism*
;
Receptors, Complement/metabolism*
;
Humans
;
Neuroinflammatory Diseases/genetics*
5.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds
6.From Correlation to Causation: Understanding Episodic Memory Networks.
Ahsan KHAN ; Jing LIU ; Maité CRESPO-GARCÍA ; Kai YUAN ; Cheng-Peng HU ; Ziyin REN ; Chun-Hang Eden TI ; Desmond J OATHES ; Raymond Kai-Yu TONG
Neuroscience Bulletin 2025;41(8):1463-1486
Episodic memory, our ability to recall past experiences, is supported by structures in the medial temporal lobe (MTL) particularly the hippocampus, and its interactions with fronto-parietal brain regions. Understanding how these brain regions coordinate to encode, consolidate, and retrieve episodic memories remains a fundamental question in cognitive neuroscience. Non-invasive brain stimulation (NIBS) methods, especially transcranial magnetic stimulation (TMS), have advanced episodic memory research beyond traditional lesion studies and neuroimaging by enabling causal investigations through targeted magnetic stimulation to specific brain regions. This review begins by delineating the evolving understanding of episodic memory from both psychological and neurobiological perspectives and discusses the brain networks supporting episodic memory processes. Then, we review studies that employed TMS to modulate episodic memory, with the aim of identifying potential cortical regions that could be used as stimulation sites to modulate episodic memory networks. We conclude with the implications and prospects of using NIBS to understand episodic memory mechanisms.
Humans
;
Memory, Episodic
;
Transcranial Magnetic Stimulation/methods*
;
Brain/physiology*
;
Nerve Net/physiology*
;
Mental Recall/physiology*
;
Neural Pathways/physiology*
7.Development of prefilled portable intelligent venous transfusion pump
Zhu-Qiang CHENG ; Peng-Yun JI ; Yong-Fen ZENG ; Min YANG ; Yi JIN ; Hong-Jun LIU
Chinese Medical Equipment Journal 2024;45(5):111-114
Objective To develop a prefilled portable intelligent intravenous transfusion pump to facilitate fast and convenient fluid pumping during emergency treatment and casualty transport.Methods The prefilled portable intelligent venous transfusion pump was composed of a driver module,a pump module,a human-machine interface,a prefilled sterile infusion bag and a pump catheter.The driver module adopted integrated design and applied a high-voltage DC-AC converter to driving the piezoelectric pump used as the power source of the pump module;the human-machine interface consisted of several keys for on/off,rate adjustment,switching and confirmation;the prefilled sterile infusion bag was made of medical-grade polypropylene,and the pump catheter was made of medical silicone rubber.Results The transfusion pump developed could be worn on the casualty limb and did not require height difference for intravenous infusion,which enhanced intravenous drug delivery in portability,reliability and intelligence.Conclusion The transfusion pump developed gains advantages in low size,weight and easy operation,and thus is worthy promoting for venous transfusion in battlefield conditions and field emergency environments.[Chinese Medical Equipment Journal,2024,45(5):111-114]
8.Individualized 3D printing guide plates-assisted surgical correction for severe kyphosis deformity
Yuanhao PENG ; Kai CHENG ; Haotian ZHU ; Hong WANG ; Kang LIU ; Yuning WANG ; Huanwen DING ; Yi WU
Journal of Army Medical University 2024;46(21):2443-2450
Objective To evaluate the correction rate,accuracy of pedicle screw fixation and overall clinical efficacy of intravertebral osteotomy and internal fixation surgery with the assistance of 3D printing guide plates in treatment of severe kyphosis.Methods A single-center nonrandomized clinical pilot study was conducted on 19 patients(8 males and 11 females)with severe kyphosis undergoing intravertebral osteotomy between December 2018 and June 2023.Seven of them(CAD group)had preoperative planning with computer-aided design(CAD)and intraoperative guidance of individualized 3D printing guide plates.And another 12 patients(control group)were corrected with conventional pedicle screw placement.Postoperative evaluation included assessment of posterior Cobb angle,spinal angular correction rate,accuracy of pedicle screw placement and Oswestry Dysfunction Index(ODI)questionnaire.Results The 19 patients were at a mean age of 48.0 years,and followed up for 26.4(9~54)months.All of them achieved relatively satisfactory corrective results,with those of the CAD group having a correction rate of 96.83%and those of the control group of 86.61%.There were no statistical differences in average intraoperative blood loss(857 vs 1 045 mL)and average operative time(344 vs 402 min),but significant difference was observed in average length of hospital stay(11 vs 18 d,P<0.05)between the 2 groups.A total of 278 nails were placed in this study,including 70 guide-assisted pedicle screws,97.1%of which were grade A or B.In the control group,208 pedicle screws were placed,93.8%of which were grade A or B.Postoperative CT/X-ray scanning displayed that both groups achieved certain correction for kyphosis.No obvious difference was found in the average spinal angular correction(43.37° vs 36.10°),and significantly higher correction rate was seen in the CAD group than the control group(96.83%vs 86.61%,P<0.01).The ODI value was notably lower in the CAD group than the control group(P<0.05).Conclusion CAD-assisted preoperative planning,surgical simulation and individualized 3D printing guide plates can promote surgical correction and accuracy of pedicle screw placement and improves the quality of life of patients with severe kyphotic deformity.
9.Expression and clinical significance of phosphorylated FGFR1Y654 in esophageal squamous cell carcinoma
Dan DU ; Jing LI ; Hong LUO ; Peng CHENG
Journal of Army Medical University 2024;46(3):257-264
Objective To explore the relationship between p-FGFR1Y654 expression and clinical pathological characteristics of esophageal squamous cell carcinoma patients and its prognostic value.Methods Tumor tissue samples from 103 cases of esophageal squamous cell carcinoma and 58 normal esophageal tissues were surgically collected in the General Hospital of Western Theater between January 2017 and July 2020.The expression of p-FGFR1Y654 in the tissues was detected using immunohistochemical assay,and its correlation with relevant clinicopathological parameters and prognosis was analyzed.Results The expression of p-FGFR1Y654 in esophageal squamous cell carcinoma tissues was significantly higher than that in normal tissue(P<0.01).Its expression level was closely related to overall survival(OS,P<0.05),but not related to age,gender,tumor stage or tumor size.Multivariate COX regression analysis showed that N-stage was identified as an independent prognostic factor for recurrence free survival(RFS)in esophageal squamous cell carcinoma patients.Survival analysis indicated that patients with low expression of p-FGFR1Y654 had significantly higher RFS and OS than those with high expression(P=0.032,95%CI:1.08~4.65;P=0.004,95%CI:2.14-11.51).Conclusion p-FGFR1Y654 is highly expressed in esophageal squamous cell carcinoma tissue,and is associated with poor prognosis in these patients.p-FGFR1Y654 may be a potential therapeutic target for esophageal squamous cell carcinoma.
10.Advances in antitumor research of bifunctional small molecule inhibitors targeting heat shock protein 90
Hong-ping ZHU ; Xin XIE ; Rui QIN ; Wei HUANG ; Yan-qing LIU ; Cheng PENG ; Gu HE ; Bo HAN
Acta Pharmaceutica Sinica 2024;59(1):1-16
The heat shock protein 90 (Hsp90) protein family is a cluster of highly conserved molecules that play an important role in maintaining cellular homeostasis. Hsp90 and its co-chaperones regulate a variety of pathways and cellular functions, such as cell growth, cell cycle control and apoptosis. Hsp90 is closely associated with the occurrence and development of tumors and other diseases, making it an attractive target for cancer therapeutics. Inhibition of Hsp90 expression can affect multiple oncogenic pathways simultaneously. Most Hsp90 small molecule inhibitors are in clinical trials due to their low efficacy, toxicity or drug resistance, but they have obvious synergistic anti-tumor effect when used with histone deacetylase (HDAC) inhibitors, tubulin inhibitors or topoisomerase II (Topo II) inhibitors. To address this issue, the design of Hsp90 dual-target inhibitors can improve efficacy and reduce drug resistance, making it an effective tumor treatment strategy. In this paper, the domain and biological function of Hsp90 are briefly introduced, and the design, discovery and structure-activity relationship of Hsp90 dual inhibitors are discussed, in order to provide reference for the discovery of novel Hsp90 dual inhibitors and clinical drug research from the perspective of medicinal chemistry.

Result Analysis
Print
Save
E-mail