1.Decompression mechanism of symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous
Chunlin ZHANG ; Zhaohua HOU ; Xu YAN ; Yan JIANG ; Su FU ; Yongming NING ; Dongzhe LI ; Chao DONG ; Xiaokang LIU ; Yongkui WANG ; Zhengming CAO ; Tengyue YANG
Chinese Journal of Tissue Engineering Research 2025;29(9):1810-1819
BACKGROUND:Traditional surgery for lumbar disc herniation involves extensive excision of tissue surrounding the nerve for decompression and removal of protruding lumbar intervertebral discs,which poses various risks and complications such as nerve damage causing paralysis,lumbar instability,herniation recurrence,intervertebral space infection,and adjacent vertebral diseases. OBJECTIVE:To propose the symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous technique for lumbar spine symmetrically decompression,showing the induced resorption of herniated nucleus pulpous phenomenon and early clinical efficacy,and then analyze its decompression mechanism. METHODS:214 patients with lumbar disc herniation at Department of Orthopedics,First Affiliated Hospital of Zhengzhou University from March 2021 to May 2023 were enrolled in this study.Among them,81 patients received conservative treatment as the control group,and 133 patients received symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous treatment as the trial group.Before surgery,immediately after surgery(7-14 days),and early after surgery(over 1 year),MRI images were used to measure the volume changes of lumbar disc herniation.CT images were used to measure the posterior displacement distance of the lumbar spinous process ligament complex,as well as the width and height of the lateral recess.Japanese Orthopaedic Association scores were used to evaluate the patient's neurological function recovery. RESULTS AND CONCLUSION:(1)Control group:81 patients with lumbar disc herniation were treated conservatively,with a total of 171 herniated lumbar discs.The average follow-up time was(22.7±23.1)months.The first and second MRI measurements of 171 herniated lumbar discs showed herniated lumbar disc volumes of(551.6±257.9)mm3 and(792.2±330.4)mm3,respectively,with an average volume increase rate of(53.2±44.4)%,showing statistically significant differences(P<0.001).Out of 171 herniated lumbar discs,4 experienced natural shrinkage,with an absorption ratio of 2.3%(4/171)and an absorption rate of(24.5±9.9)%.(2)Trial group:133 patients with lumbar disc herniation had a total of 285 herniated lumbar discs.(1)Immediately after surgery:All patients were followed up immediately after surgery.229 out of 285 herniated lumbar discs experienced retraction,with an absorption ratio of 80.3%(229/285)and an average absorption rate of(21.5±20.9)%,with significant and complete absorption accounting for 6.5%.There were a total of 70 herniated lumbar discs in the upper lumbar spine,with an absorption ratio of 85.7%(60/70),an average absorption rate of(23.1±19.5)%,and a maximum absorption rate of 86.6%.There were 215 herniated lumbar discs in the lower lumbar spine,with an absorption ratio of 78.6%(169/215),an average absorption rate of(21.0±21.3)%,and a maximum absorption rate of 83.2%.Significant and complete absorption of the upper and lower lumbar vertebrae accounted for 5.7%and 6.5%,respectively,with no statistically significant difference(P>0.05).The average distance of posterior displacement of the spinous process ligament complex immediately after surgery was(5.2±2.8)mm.There were no significant differences in the width and height of the left and right lateral recess before and immediately after surgery(P>0.05).The Japanese Orthopaedic Association score immediately after surgery increased from(10.1±3.4)before surgery to(17.0±4.8),and the immediate effective rate after surgery reached 95.6%.(2)Early postoperative period:Among them,46 patients completed the early postoperative follow-up.There were 101 herniated lumbar discs,with an absorption ratio of 94%(95/101)and an average absorption rate of(36.9±23.7)%.Significant and complete absorption accounted for 30.6%,with a maximum absorption rate of 100%.Out of 101 herniated lumbar discs,3 remained unchanged in volume,with a volume invariance rate of 2.97%(3/101).Out of 101 herniated lumbar discs,3 had an increased volume of herniated lumbar discs,with an increase ratio of 2.97%(3/101)and an increase rate of(18.5±18.4)%.The Japanese Orthopaedic Association score increased from preoperative(9.3±5.1)to(23.5±4.0),with an excellent and good rate of 93.4%.(3)The early postoperative lumbar disc herniation absorption ratios of the control group and trial group were 2.3%and 85.9%,respectively,with statistically significant differences(P<0.001).(4)Complications:There were two cases of incision exudation and delayed healing in the trial group.After conservative treatment such as dressing change,no nerve injury or death occurred in the incision healing,and no cases underwent a second surgery.(5)It is concluded that symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous is a new method for treating lumbar disc herniation that can avoid extensive excision of the"ring"nerve and achieve satisfactory early clinical efficacy.It does not damage the lumbar facet joints or alter the basic anatomical structure of the lateral recess,fully preserves the herniated lumbar discs,and can induce significant or even complete induced resorption of herniated nucleus pulpous.Symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous provides a new basis and method for the clinical treatment of lumbar disc herniation.
2.Clinical observation of lamellar keratectomy and corneal collagen crosslinking in the treatment of superficial fungal keratitis
Limei LIU ; Xinhong HAN ; Chunxiu MING ; Pengfei ZHANG ; Chao WANG
International Eye Science 2025;25(5):802-807
AIM:To evaluate the clinical efficacy of lamellar keratectomy and corneal collagen crosslinking(LKCCC)in treating superficial fungal keratitis.METHODS: Retrospective analysis. Totally 79 patients(79 eyes)with superficial fungal keratitis who underwent LKCCC in our hospital from January 2014 to October 2023 were included. After admission, routine antifungal drug treatment for 7 d showed no obvious improvement or progressive aggravation. The maximum diameter of corneal lesions in all patients was ≤7 mm, the maximum depth was no more than 50% of the corneal thickness at the location, and the remaining healthy corneal thickness was ≥300 μm. The follow-up time was 90 to 112 d.RESULTS:Among the included 79 eyes, the lesions were located in the central region of the cornea in 6 eyes, in the paracentral region in 61 eyes, and in the peripheral region in 12 eyes. Hypopyon was observed in 5 cases. LKCCC was successfully administered in 79 eyes, cured in 76 eyes(96%), and failed in 3 eyes(4%). The healing time of corneal epithelium in 76 cured eyes was 3-15 d, of which 51 eyes(67%)healed within 7 d and 24 eyes(32%)healed within 3 d. The uncorrected visual acuity(UCVA)and best corrected visual acuity(BCVA)of 76 eyes of cured patients were statistically significant compared with those preoperatively(P<0.0167). Two of the 3 failed eyes were located at the edge of the lesion and recovered after re-keratectomy. One eye was located in the center of the lesion and recovered after being covered by bulbar conjunctival flap. At the last follow-up, no other complications were observed in all patients except superficial cloud and thinning of cornea.CONCLUSION:LKCCC is a rapid and effective treatment for superficial fungal keratitis and can be considered a new treatment option.
3.Jiebiao Qingli Decoction Regulates TLR7/MAPK/NF-κB Pathway to Prevent and Treat Pneumonia Induced by IAV Infection
Yu MING ; Yichuan MA ; Ruiqi YAO ; Yan CHAO ; Hongchun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):173-181
ObjectiveTo explore the mechanism of Jiebiao Qingli decoction (JQD) in treating pneumonia caused by influenza A virus (IAV) infection. MethodsA total of 132 Balb/c mice were randomly assigned into normal control (NC), model control (IAV), oseltamivir (OSV, 37.5 mg·kg-1), and high-, medium-, low-dose JQD (H-, M-, and L-JQD: 6.05, 3.02, and 1.51 g·kg-1, respectively) groups. The NC group was treated with normal saline nasal drops, and the other groups were intranasally inoculated with A/Brisbane/02/2018 (H1N1) [pdm09-like virus (H1N1)] for the modeling of IAV infection. Two hours post-modeling, the NC and IAV groups were administrated with normal saline by gavage, while other groups received corresponding drugs for 7 d. The body mass, survival status, and deaths of mice were recorded daily during the administration of the drugs. On days 3 and 7, the lung index was measured for mice in each group. Pathological changes in the lung tissue were observed via hematoxylin-eosin staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was conducted to measure the viral load (IAV-M) and the mRNA levels of Toll-like receptor 7 (TLR7), p38 mitogen-activated protein kinase (p38 MAPK), and nuclear factor-kappa B (NF-κB) in the lung tissue. Western blot was employed to measure the protein levels of p38 MAPK and NF-κB. Enzyme-linked immunosorbent assay was used to quantify serum levels of interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). ResultsCompared with the NC group, the IAV group showed reduced survival quality and survival days (P<0.01), lung congestion, inflammatory cell infiltration, elevated lung index (P<0.01), increased viral load (P<0.01), upregulated TLR7, p38 MAPK, and NF-κB levels (P<0.05, P<0.01), decreased IL-2 level (P<0.01), and elevated IL-6 and TNF-α levels (P<0.01). Compared with the IAV group, H-JQD prolonged survival days (P<0.05). All JQD groups alleviated pathological changes in the lung tissue and reduced the lung index (P<0.01). M-JQD and H-JQD decreased the viral load (P<0.01). H-JQD downregulated the mRNA levels of TLR7, p38 MAPK, and NF-κB (P<0.05, P<0.01) and the protein levels of p38 MAPK and NF-κB (P<0.01), increased the serum IL-2 level (P<0.01), and lowered the IL-6 and TNF-α levels (P<0.05, P<0.01). M-JQD downregulated the mRNA level of NF-κB (P<0.01) and the protein level of p38 MAPK (P<0.05), elevated the IL-2 level (P<0.01), and lowered the TNF-α level (P<0.01). ConclusionM- and H-JQD can prevent and control IAV infection-induced pneumonia dose-dependently by inhibiting the TLR7/MAPK/NF-κB signaling pathway, increasing IL-2, and reducing excessive secretion of IL-6 and TNF-α.
4.Jiebiao Qingli Decoction Regulates TLR7/MAPK/NF-κB Pathway to Prevent and Treat Pneumonia Induced by IAV Infection
Yu MING ; Yichuan MA ; Ruiqi YAO ; Yan CHAO ; Hongchun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):173-181
ObjectiveTo explore the mechanism of Jiebiao Qingli decoction (JQD) in treating pneumonia caused by influenza A virus (IAV) infection. MethodsA total of 132 Balb/c mice were randomly assigned into normal control (NC), model control (IAV), oseltamivir (OSV, 37.5 mg·kg-1), and high-, medium-, low-dose JQD (H-, M-, and L-JQD: 6.05, 3.02, and 1.51 g·kg-1, respectively) groups. The NC group was treated with normal saline nasal drops, and the other groups were intranasally inoculated with A/Brisbane/02/2018 (H1N1) [pdm09-like virus (H1N1)] for the modeling of IAV infection. Two hours post-modeling, the NC and IAV groups were administrated with normal saline by gavage, while other groups received corresponding drugs for 7 d. The body mass, survival status, and deaths of mice were recorded daily during the administration of the drugs. On days 3 and 7, the lung index was measured for mice in each group. Pathological changes in the lung tissue were observed via hematoxylin-eosin staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was conducted to measure the viral load (IAV-M) and the mRNA levels of Toll-like receptor 7 (TLR7), p38 mitogen-activated protein kinase (p38 MAPK), and nuclear factor-kappa B (NF-κB) in the lung tissue. Western blot was employed to measure the protein levels of p38 MAPK and NF-κB. Enzyme-linked immunosorbent assay was used to quantify serum levels of interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). ResultsCompared with the NC group, the IAV group showed reduced survival quality and survival days (P<0.01), lung congestion, inflammatory cell infiltration, elevated lung index (P<0.01), increased viral load (P<0.01), upregulated TLR7, p38 MAPK, and NF-κB levels (P<0.05, P<0.01), decreased IL-2 level (P<0.01), and elevated IL-6 and TNF-α levels (P<0.01). Compared with the IAV group, H-JQD prolonged survival days (P<0.05). All JQD groups alleviated pathological changes in the lung tissue and reduced the lung index (P<0.01). M-JQD and H-JQD decreased the viral load (P<0.01). H-JQD downregulated the mRNA levels of TLR7, p38 MAPK, and NF-κB (P<0.05, P<0.01) and the protein levels of p38 MAPK and NF-κB (P<0.01), increased the serum IL-2 level (P<0.01), and lowered the IL-6 and TNF-α levels (P<0.05, P<0.01). M-JQD downregulated the mRNA level of NF-κB (P<0.01) and the protein level of p38 MAPK (P<0.05), elevated the IL-2 level (P<0.01), and lowered the TNF-α level (P<0.01). ConclusionM- and H-JQD can prevent and control IAV infection-induced pneumonia dose-dependently by inhibiting the TLR7/MAPK/NF-κB signaling pathway, increasing IL-2, and reducing excessive secretion of IL-6 and TNF-α.
5.Sulodexide alleviates renal fibrosis following prolonged ischemia-reperfusion injury by protecting vascular endothelial glycocalyx
Chaoyu HU ; Peng ZHANG ; Chao SUN ; Shuyong MO ; Yanfeng WANG
Organ Transplantation 2025;16(3):404-415
Objective To investigate the protective effects and mechanisms of sulodexide on renal fibrosis induced by prolonged warm ischemia. Methods An in vivo ischemia-reperfusion injury (IRI) model was established in rats, which were randomly divided into Sham group, IRI 60 min group (IRI group), and IRI 60 min + sulodexide group (IRI+SDX group), with 20 rats in each group. Pathological examination was used to evaluate renal tissue injury and fibrosis levels in each group. Immunohistochemistry was performed to detect the expression levels of kidney injury molecule (KIM)-1, intercellular adhesion molecule (ICAM)-1, von Willebrand factor (vWF), transforming growth factor (TGF)-β, α-smooth muscle actin (SMA), and type I collagen (COL-1). Immunofluorescence staining was used to detect CD31 expression. Real-time quantitative polymerase chain reaction was employed to measure the expression of KIM-1, ICAM-1, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in renal tissues. Transmission electron microscopy was used to observe the structure of the renal glycocalyx. Evans blue dye was injected to assess renal vascular permeability. Rat survival was recorded, and serum levels of syndecan (SDC)-1, heparan sulfate (HS) and serum creatinine were measured. An ex vivo perfusion model was also established, with rats randomly assigned to either the hypothermic oxygenated machine perfusion (HOPE) group or the HOPE+SDX group (five rats per group). Perfusion parameters were recorded after 2 hours of ex vivo perfusion. Results One day after reperfusion, compared with the Sham group, the IRI group exhibited more severe renal tissue injury, higher tubular injury scores, increased expression of KIM-1, ICAM-1 and vWF, decreased CD31 expression, elevated serum levels of SDC-1 and HS, increased vascular permeability, and higher expression of TNF-α, IL-1β and IL-6. Compared with the IRI group, the IRI+SDX group showed reduced renal tissue injury, lower tubular injury scores, decreased expression of KIM-1, ICAM-1 and vWF, increased CD31 expression, lower serum levels of SDC-1 and HS, decreased vascular permeability, and reduced expression of TNF-α, IL-1β and IL-6 (all P < 0.05). Ten days after reperfusion, renal tissue injury was further alleviated in the IRI+SDX group. Twenty-five days after reperfusion, the IRI+SDX group exhibited decreased expression of TGF-β, α-SMA, and COL-1, as well as reduced collagen deposition area (all P < 0.05). Compared with the HOPE group, the HOPE+SDX group showed increased renal perfusion flow and decreased intrarenal vascular resistance (both P < 0.01). Conclusions Sulodexide may alleviates renal IRI and fibrosis caused by prolonged warm ischemia by inhibiting inflammatory responses and protecting vascular endothelial glycocalyx.
6.Effect of optimized intense pulsed light on meibomian gland morphology and function in patients with meibomian gland dysfunction
Yifan ZHOU ; Pengfei ZHANG ; Lifeng LIU ; Xinhong HAN ; Chao WANG ; Limei LIU
International Eye Science 2025;25(6):968-974
AIM: To assess the impact of optimized pulsed technology(OPT)on the morphological and functional changes of meibomian glands in patients with meibomian gland dysfunction(MGD).METHODS: This prospective case-control study enrolled 60 MGD patients(60 right eyes)treated at Weifang Eye Hospital from September 2023 to February 2024. Patients were categorized into mild, moderate, and severe groups based on the extent of meibomian gland loss, with 20 cases(20 eyes)per group. Treatments consisted of bilateral OPT combined with meibomian gland massages, administered biweekly over four sessions. Ocular surface function indicators including the ocular surface disease index(OSDI), corneal fluorescein staining(CFS), non-invasive average tear break-up time(NIBUTav), and non-invasive tear meniscus height(NITMH), as well as meibomian gland function parameters such as meibomian gland expressibility score(MGES)and meibomian gland secretion score(MGYSS)were observed and recorded before treatment and at 3 mo after final treatment. Cellular-level assessments using in vivo confocal microscopy(IVCM)examined meibomian gland acinar unit density(MGAUD), inflammatory cell density(ICD), meibomian gland acinar longest diameter(MGALD)and meibomian gland acinar shortest diameter(MGASD).RESULTS: At baseline, no significant differences were found in NITMH across groups(P>0.05). Statistical significance were observed in NIBUTav, MGES, MGYSS, MGAUD, MGALD, and MGASD(all P<0.05). Compared to the mild group, the moderate and severe groups showed significant differences in OSDI, CFS, and ICD(all P<0.05), though no significant differences existed between moderate and severe groups(all P>0.05). At 3 mo after treatment, all groups showed no significant differences in NITMH(all P>0.05). All parameters improved significantly in the mild group(all P<0.05); all indicators improved in the moderate group(P>0.05), except for MGASD before and after treatment(all P<0.05); significant improvements were noted in OSDI, CFS, and NIBUTav in the severe group(all P<0.05), while MGES and MGYSS did not differ significantly(all P>0.05). IVCM parameters(MGAUD, ICD, MGALD, and MGASD)showed no significant change in the severe group(all P>0.05).CONCLUSION:OPT effectively enhances various ocular surface functions and improves gland expressibility and secretion quality in mild to moderate MGD cases, while also positively impacting certain cellular parameters. In severe cases, where most acinar functions are lost and structural reversibility is limited, OPT can still mitigate MGD symptoms and decelerate disease progression.
7.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
8.Pharmacokinetic Differences of Seven Components in Different Phases of Banxia Xiexintang in Rats
Chao HE ; Siyi LIU ; Mingyun WANG ; Qi WANG ; Jingwen ZHOU ; Tong ZHANG ; Yiqiong PU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):215-222
ObjectiveTo evaluate the effects of phases on the pharmacokinetic behavior of seven components from Banxia Xiexintang(BXT) in normal rats by investigating and comparing their pharmacokinetic profiles in different phase samples. MethodsThe phase separation of BXT was carried out by centrifugation-dialysis method, and three phase samples were obtained, including the precipitated phase(PP), colloidal phase(CP) and true solution phase(TP). A total of 24 male SD rats were randomly divided into BXT, PP, CP and TP groups(n=6). The BXT group was gavaged at a dose of 24.1 g·kg-1(calculated by the dosage of raw materials). After proper treatments, PP, CP and TP groups were administrated at the same dose as that of BXT group, respectively. Blood was collected from each group at set time points after gavage of BXT and the phase samples. The contents of 7 components(baicalin, wogonoside, wogonin, berberine, palmatine, ammonium glycyrrhizinate and isoliquiritin) in rat plasma were determined by ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QqQ-MS/MS), and the pharmacokinetic parameters of each component were analyzed by DAS 2.0. ResultsThe peak concentration of baicalin was the highest among the blood-entered components in each group, followed by wogonoside. The results of the concentration-time curves and pharmacokinetic parameters of the 7 components showed that the area under the concentration-time curve(AUC) of isoliquiritin in the BXT group was the highest, followed by that in the CP group. AUC values of baicalin, wogonoside, wogonin and ammonium glycyrrhizinate in the BXT group were similar to those of the CP group, and AUC of palmatine in the BXT group was similar to that of the PP group. The elimination half-life(t1/2) values of baicalin and wogonoside in the BXT group was the longest, the t1/2 values of ammonium glycyrrhizinate and berberine were similar to those of the CP group, and the t1/2 of palmatine was similar to that of the PP group. The t1/2 of wogonin was the longest in the PP group, and the t1/2 of isoliquiritin was the longest in the TP group was the longest, which was similar to that in the PP group. Except for isoliquiritin, the other 6 components showed double peaks in the concentration-time curve of the PP group, indicating that the above components might be reabsorbed through the enterohepatic circulation in vivo, which resulted in the maintenance of high plasma concentrations for a long time, and consequently exhibited sustained-release properties. ConclusionThe pharmacokinetic characteristics of the components in different phases were different, and the CP phase may be the effective phase from the perspective of the pharmacological action of BXT. Compared with the BXT group, the in vivo action times of some components in the CP and PP groups were prolonged. The study explores the phase differences of traditional Chinese medicine(TCM) compound decoction in the aspect of pharmacokinetics, and verifies that the phase states from TCM compound decoction will affect the pharmacokinetic behaviors of the active components, which may consequently lead to the difference in in vivo effects.
9.Pharmacokinetic Differences of Seven Components in Different Phases of Banxia Xiexintang in Rats
Chao HE ; Siyi LIU ; Mingyun WANG ; Qi WANG ; Jingwen ZHOU ; Tong ZHANG ; Yiqiong PU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):215-222
ObjectiveTo evaluate the effects of phases on the pharmacokinetic behavior of seven components from Banxia Xiexintang(BXT) in normal rats by investigating and comparing their pharmacokinetic profiles in different phase samples. MethodsThe phase separation of BXT was carried out by centrifugation-dialysis method, and three phase samples were obtained, including the precipitated phase(PP), colloidal phase(CP) and true solution phase(TP). A total of 24 male SD rats were randomly divided into BXT, PP, CP and TP groups(n=6). The BXT group was gavaged at a dose of 24.1 g·kg-1(calculated by the dosage of raw materials). After proper treatments, PP, CP and TP groups were administrated at the same dose as that of BXT group, respectively. Blood was collected from each group at set time points after gavage of BXT and the phase samples. The contents of 7 components(baicalin, wogonoside, wogonin, berberine, palmatine, ammonium glycyrrhizinate and isoliquiritin) in rat plasma were determined by ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QqQ-MS/MS), and the pharmacokinetic parameters of each component were analyzed by DAS 2.0. ResultsThe peak concentration of baicalin was the highest among the blood-entered components in each group, followed by wogonoside. The results of the concentration-time curves and pharmacokinetic parameters of the 7 components showed that the area under the concentration-time curve(AUC) of isoliquiritin in the BXT group was the highest, followed by that in the CP group. AUC values of baicalin, wogonoside, wogonin and ammonium glycyrrhizinate in the BXT group were similar to those of the CP group, and AUC of palmatine in the BXT group was similar to that of the PP group. The elimination half-life(t1/2) values of baicalin and wogonoside in the BXT group was the longest, the t1/2 values of ammonium glycyrrhizinate and berberine were similar to those of the CP group, and the t1/2 of palmatine was similar to that of the PP group. The t1/2 of wogonin was the longest in the PP group, and the t1/2 of isoliquiritin was the longest in the TP group was the longest, which was similar to that in the PP group. Except for isoliquiritin, the other 6 components showed double peaks in the concentration-time curve of the PP group, indicating that the above components might be reabsorbed through the enterohepatic circulation in vivo, which resulted in the maintenance of high plasma concentrations for a long time, and consequently exhibited sustained-release properties. ConclusionThe pharmacokinetic characteristics of the components in different phases were different, and the CP phase may be the effective phase from the perspective of the pharmacological action of BXT. Compared with the BXT group, the in vivo action times of some components in the CP and PP groups were prolonged. The study explores the phase differences of traditional Chinese medicine(TCM) compound decoction in the aspect of pharmacokinetics, and verifies that the phase states from TCM compound decoction will affect the pharmacokinetic behaviors of the active components, which may consequently lead to the difference in in vivo effects.
10.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.

Result Analysis
Print
Save
E-mail