1.Identification of the sugarcane β-1,3-glucanase gene family and analysis of their expression under various stress conditions.
Tingchen HUANG ; Yifei XIA ; Yurong LUO ; Shoujian ZANG ; Yan CHEN ; Qinghong LIU ; Yingying LI ; Yue ZHANG ; Wenyue ZHANG ; Yachun SU ; Chuihuai YOU
Chinese Journal of Biotechnology 2025;41(7):2913-2933
Sugarcane (Saccharum spp.) is an important sugar crop. Biotic and abiotic stresses such as diseases, cold, and drought are major factors limiting sugarcane production. β-1,3-glucanase (EC 3.2.1.39), a member of the pathogenesis-related protein family, plays an essential role not only in the plant defenses against pathogens but also in plant growth, development, and abiotic stress responses. To systematically investigate the sugarcane β-1,3-glucanase gene family, 132 glycoside hydrolase (GH) 17 family members were identified in the genomes of the sugarcane wild species Saccharum spontaneum 'Np-X', the tropical species S. officinarum 'LA-Purple', and the Saccharum spp. hybrid cultivar 'R570'. The results of the phylogenetic analysis categorized them into four subfamilies, of which subfamily Ⅳ had the largest proportion of members (102). The members of the sugarcane GH17 gene family contained five conserved motifs and 0-16 introns. The majority of the GH17 genes exhibited a genome-wide replication pattern, with 89.50% originating from S. spontaneum 'Np-X' and S. officinarum 'LA-Purple', while 58.10% of them in the Saccharum spp. hybrid cultivar 'R570' belonged to the discrete replication type. Four major classes of cis-acting elements were identified in the promoters, including the elements related to plant growth, development, and tissue-specific expression (14.21%), light-responsive elements (38.24%), biotic or abiotic stress-responsive elements (9.18%), and hormone-responsive elements (38.37%), which suggested that this gene family was involved in plant growth, development, hormone responses, and stress responses. Transcriptome and quantitative real-time PCR (RT-qPCR) analyses showed that the sugarcane GH17 genes exhibited tissue-specific expression and were differentially expressed under low temperature, drought, and hormone treatments, as well as during the interactions between different sugarcane genotypes and Sporisorium scitamineum, suggesting their potential roles in plant defenses. In addition, some SsGlu genes (SsGlu5, SsGlu20, SsGlu21, SsGlu25, SsGlu28, and SsGlu39) were expected to serve as candidate stress-related genes. This study lays a foundation for further revealing the molecular mechanisms of the stress resistance of sugarcane via β-1,3-glucanase genes.
Saccharum/physiology*
;
Stress, Physiological/genetics*
;
Glucan 1,3-beta-Glucosidase/metabolism*
;
Multigene Family
;
Phylogeny
;
Gene Expression Regulation, Plant
;
Plant Proteins/genetics*
2.Expression of β-glucosidase An-bgl3 from Aspergillus niger for conversion of scopolin.
Kunpeng YU ; Cheng PENG ; Yanling LIN ; Lijun LI ; Hui NI ; Qingbiao LI
Chinese Journal of Biotechnology 2023;39(3):1232-1246
Scopoletin is a coumarin compound with various biological activities including detumescence and analgesic, insecticidal, antibacterial and acaricidal effects. However, interference with scopolin and other components often leads to difficulties in purification of scopoletin with low extraction rates from plant resource. In this paper, heterologous expression of the gene encoding β-glucosidase An-bgl3 derived from Aspergillus niger were carried out. The expression product was purified and characterized with further structure-activity relationship between it and β-glucosidase analyzed. Subsequently, its ability for transforming scopolin from plant extract was studied. The results showed that the specific activity of the purified β-glucosidase An-bgl3 was 15.22 IU/mg, the apparent molecular weight was about 120 kDa. The optimum reaction temperature and pH were 55 ℃ and 4.0, respectively. Moreover, 10 mmol/L metal ions Fe2+ and Mn2+ increased the enzyme activity by 1.74-fold and 1.20-fold, respectively. A 10 mmol/L solution containing Tween-20, Tween-80 and Triton X-100 all inhibited the enzyme activity by 30%. The enzyme showed affinity towards scopolin and tolerated 10% methanol and 10% ethanol solution, respectively. The enzyme specifically hydrolyzed scopolin into scopoletin from the extract of Erycibe obtusifolia Benth with a 47.8% increase of scopoletin. This demonstrated that the β-glucosidase An-bgl3 from A. niger shows specificity on scopolin with good activities, thus providing an alternative method for increasing the extraction efficiency of scopoletin from plant material.
Aspergillus niger/genetics*
;
beta-Glucosidase/chemistry*
;
Scopoletin
;
Polysorbates
;
Coumarins
3.Heterologous expression of a novel β-glucosidase BglD2 and its application in polydatin-hydrolyzing.
Cheng HE ; Yan WU ; Chunyu MENG ; Yazhong XIAO ; Zemin FANG ; Wei FANG
Chinese Journal of Biotechnology 2021;37(2):580-592
A novel β-glucosidase BglD2 with glucose and ethanol tolerant properties was screened and cloned from the deep-sea bacterium Bacillus sp. D1. The application potential of BglD2 toward polydatin-hydrolyzing was also evaluated. BglD2 exhibited the maximal β-glucosidase activity at 45 °C and pH 6.5. BglD2 maintained approximately 50% of its origin activity after incubation at 30 °C and pH 6.5 for 20 h. BglD2 could hydrolyze a variety of substrates containing β (1→3), β (1→4), and β (1→6) bonds. The activity of β-glucosidase was enhanced to 2.0 fold and 2.3 fold by 100 mmol/L glucose and 150 mmol/L xylose, respectively. BglD2 possessed ethanol-stimulated and -tolerant properties. At 30 °C, the activity of BglD2 enhanced to 1.2 fold in the presence of 10% ethanol and even remained 60% in 25% ethanol. BglD2 could hydrolyze polydatin to produce resveratrol. At 35 °C, BglD2 hydrolyzed 86% polydatin after incubation for 2 h. Thus, BglD2 possessed glucose and ethanol tolerant properties and can be used as the potential candidate of catalyst for the production of resveratrol from polydatin.
Enzyme Stability
;
Glucose
;
Glucosides/pharmacology*
;
Hydrogen-Ion Concentration
;
Stilbenes/pharmacology*
;
Substrate Specificity
;
Temperature
;
Xylose
;
beta-Glucosidase/genetics*
4.Construction of an ethanologenic Escherichia coli strain expressing beta-glucosidase.
Yao ZHANG ; Zichen LUO ; Qiuqiang GAO ; Jie BAO
Chinese Journal of Biotechnology 2013;29(9):1254-1267
Constructing ethanologenic strains with cellulose activity is important to achieve consolidated bioprocessing of lignocellulose for ethanol production. In this study, we integrated the pyruvate decarboxylase gene pdc and alcohol dehydrogenase gene adhB from Zymomonas mobilis ZM4 into Escherichia coli JM109 by Red recombination method to generatea recombinant strain E. coli P81 that could produce ethanol from glucose. Abeta-glucosidase gene bglB from Bacillus polymyxa 1.794 was cloned into the recombinant E. coli P81 and beta-glucosidase was expressed to give a new recombinant strain E. coli P81 (pUC19-bglB) with dual functions of cellobiose degradation and ethanol production. The extracellular beta-glucosidaseactivity was 84.78 mU/mL broth and the extracellular cellobiase activity of E. coli P81 (pUC19-bglB) was 32.32 mU/mL broth. E. coli P81 (pUC19-bglB) fermented cellobiose to ethanol with a yield of 55.8% of the theoretical value, and when glucose and cellobiose were co-fermented, the ethanol yield reached 46.5% of thetheoretical value. The construction of consolidated bioprocessing strain opens the possibility to convert cellobiose to ethanol in a single bioprocess.
Bacterial Secretion Systems
;
Cellulose
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Ethanol
;
metabolism
;
Fermentation
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
beta-Glucosidase
;
biosynthesis
;
genetics
5.Cloning, expression and characterization of beta-glucosidase from Aspergillus fumigatus.
Yi XIE ; Haomiao OUYANG ; Ribo HUANG ; Dong CHEN ; Cheng JIN
Chinese Journal of Biotechnology 2013;29(9):1245-1253
Exploring new beta-glucosidase genes is of great importance to industrialize beta-glucosidase. The genomes of Aspergillus fumigatus contain a bgl gene, which encodes a 65 kDa putative beta-glucosidase. The bgl gene was cloned into an expression plasmid and transformed to Escherichia coli BL21 (DE3). The bgl was expressed upon induction of Isopropyl beta-D-1-thiogalactopyranoside (IPTG). The recombinant protein was purified by GST-tag affinity chromatography. The purified recombinant Bgl was characterized using Esculin as substrate. The optimum temperature and pH were 45 degrees C and 5.0-6.0, respectively. The K(m) for Esculin was 17.7 mmol/L. The enzyme was stable in the range of pH 4-7. After incubation at 70 degrees C for 2 h, the recombinant Bgl remained 60% of its activity. Metal ions and chemical reagents had different influences on the activity of beta-glucosidase. Ca2+ (1 mmol/L) could increase enzyme activity slightly. On the contrary, the enzyme activity was greatly inhibited by 5 mmol/L Sodium dodecyl sulfate (SDS). Based on our results, the A. fumigatus Bgl was thermostable beta-glucosidase.
Aspergillus fumigatus
;
enzymology
;
Cloning, Molecular
;
Enzyme Stability
;
Escherichia coli
;
genetics
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
metabolism
;
beta-Glucosidase
;
biosynthesis
;
genetics
;
metabolism
6.Protoplast mutagenesis for improving beta-glucosidase production of Aspergillus niger.
Chunli WANG ; Gaihong WU ; Chang CHEN ; Shulin CHEN
Chinese Journal of Biotechnology 2009;25(12):1921-1926
The aims of this research were to isolate a Aspergillus niger strain with higher beta-glucosidase activity. We utilized the beta-glucosidase producing strain Aspergillus niger CGMCC 3.316 as the original strain to first obtain a mutant 3-3M through ultraviolet irradiation. Then we studied the conditions of protoplast release and regeneration for strain 3-3M. We treated the protoplasts of strain 3-3M via ultraviolet irradiation and obtained another isolated mutant 60B-3D. The strain 60B-3D showed much higher beta-glucosidase production than the original strain and 3-3M strain. The beta-glucosidase activity of strain 60B-3D was 23.4 IU/mL, with an improvement of 39% compared with the original strain, and 23% compared with strain 3-3M. We also studied the fermentation process of strain 60B-3D, and compared it with the original strain and strain 3-3M. We found the strain 60B-3D exhibited an improvement in xylanase production. The comparison results also showed that the strain 60B-3D secreted more protein. These results were beneficial for producing beta-glucosidase through this productive mutant.
Amino Acid Sequence
;
Aspergillus niger
;
enzymology
;
genetics
;
Endo-1,4-beta Xylanases
;
biosynthesis
;
Fermentation
;
Molecular Sequence Data
;
Mutagenesis
;
Mutation
;
Protoplasts
;
enzymology
;
beta-Glucosidase
;
biosynthesis
7.Cloning and characterization of a beta-glucosidase from marine metagenome.
Wei FANG ; Zemin FANG ; Juanjuan LIU ; Yuzhi HONG ; Hui PENG ; Xuecheng ZHANG ; Baolin SUN ; Yazhong XIAO
Chinese Journal of Biotechnology 2009;25(12):1914-1920
In the present study, through a functional strategy, a metagenome library of the marine microbes from the surface water of the South China Sea was screened for beta-glucosidase and six positive clones were obtained. One of these clones, pSB47B2, was subcloned and further analysed in sequence. The result showed that there was an open reading frame for a novel beta-glucosidase, which was nominated as bgl1B. Using pET22b(+) as vector and Escherichia coli BL21(DE3) as host, Bgl1B was overexpressed recombinantly with high yield obtained and substantial enzymatic activity detected. The recombinant protein (rBgllB) was purified by Ni-NTA affinity chromatography and further biochemically characterized. The results indicated that, with pNPG as substrate, the optimum pH and temperature for the hydrolytic activity of rBgl1B were about 6.5 and 40 degrees C respectively. Under the optimum conditions, rBgl1B hydrolyzed pNPG with an activity up to 39.7 U/mg, Km and Vmax being 0.288 mmol/L and 36.9 micromol/min respectively. In addition, rBgl1B could also hydrolyze cellobiose, with a Km of 0.173 mmol/L and a Vmax of 35 micromol/min. However, we did not detect evident hydrolytic activity of rBgl1B to lactose, maltose, sucrose, and CMC. The enzymatic activity of rBgl1B to pNPG was stimulated to certain degrees by low concentration of Ca2+ or Mn2+, whereas it exhibited significant tolerance against high Na+. Distinguished from most of the beta-glucosidases derived from fungi, which display the highest activities under acidic conditions, rBgl1B exhibited relatively higher activity and stability at pH between 7.0 and 9.0.
Amino Acid Sequence
;
Cloning, Molecular
;
Enzyme Stability
;
Escherichia coli
;
genetics
;
metabolism
;
Metagenome
;
genetics
;
Metagenomics
;
methods
;
Molecular Sequence Data
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
isolation & purification
;
Seawater
;
microbiology
;
beta-Glucosidase
;
biosynthesis
;
genetics
8.Agrobacterium tumefaciens mediated Chitinase and beta-1,3-glucanase gene transformation for Pinellia ternata.
Bo JIN ; Fusheng JIANG ; Meirong YU ; Nipi CHEN ; Zhishan DING
China Journal of Chinese Materia Medica 2009;34(14):1765-1767
OBJECTIVETo obtain transgenic Pinellia ternata plants resistant to fungus by transfer Chitinase and beta-1,3-Glucanase gene from Trichoderma harzianum.
METHODUsing hygromycin phosphotransferase as the selection marker, the Chitinase gene (ech42), beta-1,3-Glucanase gene (gluc78) and both gene pCAMBIA(ech42 + gluc78) driven by CaMV35S promoter were transferred into P. ternata callus via Agrobacterium-mediated transformation.
RESULTPCR results confirmed that the regenerants were identified to be transgenic lines and the RT-PCR results confirmed that foreign genes construction were transfer to mRNA. Two foreign genes were inherited stably to T5 generation according to PCR results of the lines.
CONCLUSIONThe results showed that chitinase gene ech42 and beta-1, 3-glucanase gene gluc78 respectively or together introducing and co-integrating into P. ternata
Agrobacterium tumefaciens ; genetics ; metabolism ; Chitinases ; genetics ; metabolism ; Fungal Proteins ; genetics ; metabolism ; Gene Expression Regulation, Plant ; Gene Transfer Techniques ; Genetic Vectors ; genetics ; metabolism ; Glucan 1,3-beta-Glucosidase ; genetics ; metabolism ; Pinellia ; genetics ; metabolism ; Transformation, Genetic ; Trichoderma ; enzymology
9.Cloning and expression of a beta-glucosidase gene umcel3G from metagenome of buffalo rumen and characterization of the translated product.
Hong GUO ; Yi FENG ; Xinchun MO ; Chengjie DUAN ; Jiliang TANG ; Jiaxun FENG
Chinese Journal of Biotechnology 2008;24(2):232-238
Metagenomic cosmid libraries containing 1.26 x 10(5) clones, covering about 4.8 x 10(6) kb metagenomic DNA of uncultured microorganisms from the contents of buffalo rumens were constructed, and 118 independent clones expressing beta-glucosidase activity were isolated from the libraries. Screening of these clones showed that eight clones expressed relatively higher beta-glucosidase activity at pH 5.0 and 37 degrees C. One out of the eight clones was subcloned. Sequencing analysis showed that an open reading frame (ORF) of 2223 bp, termed umcel3G, potentially encodes a beta-glucosidase. The encoded product shared highest homology with a beta-glucosidase from Bacillus sp. at 60% identity and 73% similarity. The umcel3G was over-expressed in Escherichia coli and the size of the translated product Umcel3G on SDS-PAGE was in agreement with the predicted molecular mass. Zymogram analysis showed that Umcel3G exhibited beta-glucosidase activity, confirming that this ORF encodes a beta-glucosidase. The Umcel3G, purified with Ni-NTA column, exhibited optimal activity at pH 6.0-6.5 and 45 degrees C. Certain ions such as Ca2+, Zn2+ had significant positive effect on the activity of Umcel3G. However, some ions such as Fe3+, Cu2+ gave significant inhibitory effect on the enzyme. The Ni-NTA purified recombinant beta-glucosidase Umcel3G had a specific activity of 22.8 IU/mg at pH4.5, 35 degrees C and at the presence of 5 mmol/L Ca2+, indicating that this enzyme has potential applications in the fermentative production of ethanol by simultaneous saccharification and cofermentation (SSCF) of lignocelluloses.
Animals
;
Bacteria
;
enzymology
;
genetics
;
Buffaloes
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Open Reading Frames
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
isolation & purification
;
metabolism
;
Rumen
;
microbiology
;
beta-Glucosidase
;
biosynthesis
;
genetics
;
isolation & purification
10.Study on isoflavone active aglycone preparation by immobilized beta-glucosidase from Aspergillus niger.
Li-Hua PAN ; Jian-Ping LUO ; Shao-Tong JIANG
Chinese Journal of Biotechnology 2007;23(6):1060-1064
With sodium alginate as a carrier and glutaraldehyde as the crosslinking agent, an improved immobilization method of beta-glucosidase for production of soybean genistein was developed. As compared with entrapment or entrapment-crosslinkage, crosslinkage-entrapment that beta-glucosidase was treated with glutaraldehyde and then entrapped in sodium alginate remained high loading efficiency and activity recovery, Effects of bead sizes, concentrations of alginate and glutaraldehyde as well, on the loading efficiency and activity recovery were assessed. When compared with the free enzyme, the optimum temperature, pH value and Km of the immobilized beta-glucosidase were respectively shifted from 50 degrees C to 40 degrees C, 4.5 to 4.0 and 2.57 microg/mL to 2.02 miocrog/mL. The stabilities of the immobilized beta-glucosidase were considerably better than that of the native enzyme. The immobilized beta-glucosidase was employed to genistein production, 84.94% of the activity and 56.04% of conversion were kept after consecutive use of 6 times.
Alginates
;
chemistry
;
Aspergillus niger
;
enzymology
;
genetics
;
Enzyme Stability
;
Enzymes, Immobilized
;
metabolism
;
Genistein
;
chemical synthesis
;
chemistry
;
Glucuronic Acid
;
chemistry
;
Glutaral
;
chemistry
;
Hexuronic Acids
;
chemistry
;
Isoflavones
;
chemistry
;
Soybeans
;
chemistry
;
beta-Glucosidase
;
chemistry
;
metabolism

Result Analysis
Print
Save
E-mail