1.Banxia Xiexin Decoction suppresses malignant phenotypes of colon cancer cells via PARG/PARP1/NF-κB signaling pathway.
Yu-Qing HUANG ; Jia-Mei WANG ; Heng-Zhou LAI ; Chong XIAO ; Feng-Ming YOU ; Qi-Xuan KUANG ; Yi-Fang JIANG
China Journal of Chinese Materia Medica 2025;50(2):496-506
This study aims to delve into the influences and underlying mechanisms of Banxia Xiexin Decoction(BXD) on the proliferation, apoptosis, invasion, and migration of colon cancer cells. Firstly, the components of BXD in blood were identified by UPLC-MS/MS, and subsequently the content of these components were determined by HPLC. Then, different concentrations of BXD were used to treat both the normal intestinal epithelial cells(NCM460) and the colon cancer cells(HT29 and HCT116). The cell viability and apoptosis were examined by the cell counting kit-8(CCK-8) and flow cytometry, respectively. Western blot was employed to determine the expression of the apoptosis regulators B-cell lymphoma-2(Bcl-2) and Bcl-2-associated X(Bax). The cell wound healing assay and Transwell assay were employed to measure the cell migration and invasion, respectively. Additionally, Western blot was employed to determine the expression levels of epithelial-mesenchymal transition(EMT)-associated proteins, including epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), and vimentin. The protein and mRNA levels of the factors in the poly(ADP-ribose) glycohydrolase(PARG)/poly(ADP-ribose) polymerase 1(PARP1)/nuclear factor kappa-B p65(NF-κB p65) signaling pathway were determined by Western blot and RT-qPCR, respectively. The results demonstrated that following BXD intervention, the proliferation of HT29 and HCT116 cells was significantly reduced. Furthermore, BXD promoted the apoptosis, enhanced the expression of Bcl-2, and suppressed the expression of Bax in colon cancer cells. At the same time, BXD suppressed the cell migration and invasion and augmented the expression of E-cadherin while diminishing the expression of N-cadherin and vimentin. In addition, BXD down-regulated the protein and mRNA levels of PARG, PARP1, and NF-κB p65. In conclusion, BXD may inhibit the malignant phenotypes of colon cancer cells by mediating the PARG/PARP1/NF-κB signaling pathway.
Colonic Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Phenotype
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Apoptosis
;
Cell Movement/drug effects*
;
Neoplasm Invasiveness
;
HCT116 Cells
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Humans
;
Poly (ADP-Ribose) Polymerase-1
;
Glycoside Hydrolases
;
bcl-2-Associated X Protein
;
NF-kappa B p50 Subunit
2.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
3.Molecular Mechanism of Thymoquinone Inhibition on Malignant Proliferation of Acute Myeloid Leukemia Cells.
Jie LIN ; Fan-Lin ZENG ; Yan-Quan LIU ; Zhi-Min YAN ; Zuo-Tao LI ; Qing-Lin XU ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(2):311-318
OBJECTIVE:
To investigate the effects of thymoquinone on the proliferation of acute myeloid leukemia (AML) cells and its molecular mechanism, so as to provide theoretical basis for the basic research on the anti-leukemia of traditional Chinese medicine.
METHODS:
The HL-60 and THP-1 cells were treated with thymoquinone at different concentration gradients, cell proliferation was detected by CCK-8 method, morphological changes were detected by Wright-Giemsa method, apoptosis was detected by Annexin V/PI double staining flow cytometry, and apoptosis and signal pathway protein expression were detected by Western blot. Real-time quantitative fluorescence PCR and Western blot were used to detect the expression changes of high mobility family members of SRY-related proteins (SOX).
RESULTS:
Thymoquinone inhibited the malignant proliferation of HL-60 and THP-1 cells, up-regulated the expression of pro-apoptotic protein Bax, down-regulated the expression of anti-apoptotic protein Bcl-2 and Survivin, and hydrolyzed Caspase-3 to induce the apoptosis of HL-60 and THP-1 cells. Thymoquinone could also significantly down-regulate the phosphorylation of PI3K, Akt and mTOR, and inhibit the malignant biological characteristics of HL-60 and THP-1 cells by inhibiting the activation of PI3K/Akt/mTOR pathway. After thymoquinone intervention in HL-60 and THP-1 cells, the expression of SOX2 and SOX4 could be down-regulated significantly. At low concentration ( < 10 μmol/L), the expression of SOX12 was weakly affected by thymoquinone. With increasing concentration, the expression of SOX12 could be down-regulated, however, thymoquinone had no effect on SOX11 expression.
CONCLUSION
Thymoquinone can inhibit the proliferation of AML cells, and its mechanism may be related to inhibiting the activation of PI3K/Akt/mTOR signaling pathway, regulating the expression of apoptotic proteins and core members of SOX family.
Humans
;
Benzoquinones/pharmacology*
;
Cell Proliferation/drug effects*
;
Leukemia, Myeloid, Acute/metabolism*
;
Apoptosis/drug effects*
;
HL-60 Cells
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Cell Line, Tumor
;
Phosphatidylinositol 3-Kinases/metabolism*
;
THP-1 Cells
4.HDAC1 overexpression inhibits steroid-induced apoptosis of mouse osteocyte-like MLO-Y4 cells by inducing SP1 deacetylation.
Shenyao ZHANG ; Min LU ; Gaoyan KUANG ; Xiaotong XU ; Jun FU ; Churan ZENG
Journal of Southern Medical University 2025;45(1):10-17
OBJECTIVES:
To explore the mechanism by which histone deacetylase 1 (HDAC1) regulates steroid-induced apoptosis of mouse osteocyte-like MLO-Y4 cells.
METHODS:
MLY-O4 cells were treated with 400 nmol/L trichostatin A (TSA) or 1 mmol/L dexamethasone for 24 h or transfected with a HDAC1-overexpressing vector prior to TSA or dexamethasone treatment. The changes in the expressions of HDAC1, SP1, cleaved caspase-3 and Bax, SP1 acetylation level, cell proliferation, and cell apoptosis were examined. The interaction between HDAC1 and SP1 was determined with immunoprecipitation assay and Western blotting.
RESULTS:
Treatment with dexamethasone significantly increased cell apoptosis, enhanced the expressions of cleaved caspase-3 and Bax, reduced HDAC1 expression, and suppressed proliferation of MLO-Y4 cells. Both TSA and dexamethasone obviously increased SP1 acetylation level and the expression of SP1 in MLO-Y4 cells. HDAC1 overexpression in the cells significantly attenuated the effect of TSA and dexamethasone, promoted cell proliferation, lowered the expressions of SP1, cleaved caspase-3 and Bax, and inhibited dexamethasone-induced cell apoptosis. Immunoprecipitation assay and Western blotting demonstrated the interaction between HDAC1 and SP1 in the cells.
CONCLUSIONS
HDAC1 inhibits dexamethasone-induced apoptosis and promotes proliferation of cultured mouse osteocytes by suppressing SP1 expression via promoting its deacetylation.
Animals
;
Apoptosis/drug effects*
;
Mice
;
Histone Deacetylase 1/genetics*
;
Osteocytes/drug effects*
;
Sp1 Transcription Factor/metabolism*
;
Acetylation
;
Dexamethasone/pharmacology*
;
Cell Proliferation/drug effects*
;
Caspase 3/metabolism*
;
Cell Line
;
Hydroxamic Acids/pharmacology*
;
bcl-2-Associated X Protein/metabolism*
5.Effects of blocking apoptosis and lactic acid metabolism pathways on robustness and foreign protein expression of CHO cells.
Hong LU ; Tongyang ZHANG ; Ruofei LYU ; Bolin HOU ; Tingwen FAN ; Huaiyi YANG ; Jie NA
Chinese Journal of Biotechnology 2025;41(8):3098-3109
The Chinese hamster ovary (CHO) cell is the most representative mammalian cell protein expression system, and it is widely used in recombinant protein, vaccine and other biopharmaceutical fields. However, due to its vulnerability to environmental factors, apoptosis, and metabolic inhibitors, CHO cells demonstrate poor robustness, and thus the integrated viable cell density and unit cell productivity are largely limited. To improve the robustness and foreign protein expression efficiency of CHO cells, we employed CRISPR/Cas9 to knock out the apoptosis genes Bax and Bak and the lactate dehydrogenase gene LDHa, thereby blocking apoptosis and lactic acid metabolism pathways. The results of apoptosis and single cell viability detection showed that the number of apoptotic cells in the knockout cell lines Bax-/-, Bax-bak-/-, and LDHa-Bax-bak-/- was reduced by 22.51%, 37.73%, and 64.12%, respectively, compared with the wild-type cell line CHO-K1, which indicated that the anti-apoptotic ability was significantly improved. After staurosporine treatment, the single cell viability of Bax-/-, Bax-bak-/-, and LDHa-Bax-bak-/- cells was increased by 30.8%, 22%, and 41.1%, respectively. After treatment with puromycin, the single cell viability of Bax-/-, Bax-bak-/-, and LDHa-Bax-bak-/- cells was increased by 26.7%, 30.7%, and 38.8%, respectively. To further investigate the production performance of cells obtained after blocking apoptosis and lactic acid metabolism pathways, we induced transient expression of human tissue plasminogen activator (tPA) in these cells. The results showed that the secretion of tPA in Bax-/-, Bax-Bak-/-, and LDHa-Bax-Bak-/- cells was 11.12%, 46.18%, and 63.13%, respectively, higher than that in wild-type CHO-K1 cells. The expression of intracellular tPA was increased by 35.65%, 130%, and 192.15%. In conclusion, blocking apoptosis and lactic acid metabolism pathways simultaneously can improve cell robustness and productivity, with the performance better than blocking the apoptosis pathway alone. The above results indicated that the constructed cell lines were expected to be the delivery carriers of protein drugs such as medicinal peptides, and better used for the treatment of diseases.
CHO Cells
;
Cricetulus
;
Animals
;
Apoptosis/genetics*
;
Lactic Acid/metabolism*
;
Recombinant Proteins/biosynthesis*
;
L-Lactate Dehydrogenase/genetics*
;
bcl-2-Associated X Protein/genetics*
;
bcl-2 Homologous Antagonist-Killer Protein/genetics*
;
Cricetinae
;
CRISPR-Cas Systems
;
Staurosporine/pharmacology*
6.Study on the protective effects of resveratrol on the liver of hindlimb-unloaded rats.
Yingying XUAN ; Yutian YANG ; Hanqin TANG ; Zhihui MA ; Liang LI ; Dongshuai SHEN ; Mei ZHANG ; Keming CHEN
Journal of Biomedical Engineering 2024;41(6):1250-1256
This study aims to investigate the protective effect of resveratrol against liver injury in hindlimb unloading rats. Thirty 2-month-old male SD rats were randomly divided into normal group (Control), hindlimb unloading model group (Model), and hindlimb unloading+resveratrol administration group (Model+Res). The Model + Res group was injected intraperitoneally with 30 mg/kg of resveratrol, and the Control and Model groups were injected intraperitoneally with an equal volume of 0.9% NaCl. Liver tissues were collected after 28 days and analyzed for oxidative stress, inflammatory factors, energy metabolism indices, Na +-K +-ATPase and Ca 2+-Mg 2+-ATPase activity, and morphological changes were observed by hematoxylin-eosin staining. The protein expression levels of Bax, Bcl-2, p-PI3K, PI3K, p-AKT, and AKT were detected by Western blotting. Compared with the Control group, hepatocytes in the Model group showed swelling, abnormal morphology, nuclear consolidation, and cell membrane disruption. Oxidative stress, inflammatory factor levels, hepatic glycogen accumulation, and energy metabolism were increased in the liver tissues of the Model group, while resveratrol treatment significantly reversed these changes. The results of Western blotting showed that resveratrol significantly reduced the expression of Bax and increased the expression levels of Bcl-2, and the proteins of p-PI3K/PI3K and p-AKT/AKT expression levels. It is suggested that 28 days of hindlimb unloading treatment could lead to liver tissue injury in rats, which is manifested as oxidative stress, inflammatory response, energy metabolism disorder and increased apoptosis level, and resveratrol has a certain mitigating effect on this.
Animals
;
Resveratrol
;
Male
;
Liver/pathology*
;
Rats, Sprague-Dawley
;
Rats
;
Hindlimb Suspension
;
Oxidative Stress/drug effects*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Stilbenes/pharmacology*
;
bcl-2-Associated X Protein/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis/drug effects*
7.Mechanism of nuclear protein 1 in the resistance to axitinib in clear cell renal cell carcinoma.
Yun Chong LIU ; Zong Long WU ; Li Yuan GE ; Tan DU ; Ya Qian WU ; Yi Meng SONG ; Cheng LIU ; Lu Lin MA
Journal of Peking University(Health Sciences) 2023;55(5):781-792
OBJECTIVE:
To explore the potential mechanism of resistance to axitinib in clear cell renal cell carcinoma (ccRCC), with a view to expanding the understanding of axitinib resistance, facilitating the design of more specific treatment options, and improving the treatment effectiveness and survival prognosis of patients.
METHODS:
By exploring the half maximum inhibitory concentration (IC50) of axitinib on ccRCC cell lines 786-O and Caki-1, cell lines resistant to axitinib were constructed by repeatedly stimulated with axitinib at this concentration for 30 cycles in vitro. Cell lines that were not treated by axitinib were sensitive cell lines. The phenotypic differences of cell proliferation and apoptosis levels between drug resistant and sensitive lines were tested. Genes that might be involved in the drug resistance process were screened from the differentially expressed genes that were co-upregulated in the two drug resistant lines by transcriptome sequencing. The expression level of the target gene in the drug resistant lines was verified by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB). The expression differences of the target gene in ccRCC tumor tissues and adjacent tissues were analyzed in the Gene Expression Profiling Interactive Analysis (GEPIA) public database, and the impact of the target gene on the prognosis of ccRCC patients was analyzed in the Kaplan-Meier Plotter (K-M Plotter) database. After knocking down the target gene in the drug resistant lines using RNA interference by lentivirus vector, the phenotypic differences of the cell lines were tested again. WB was used to detect the levels of apoptosis-related proteins in the different treated cell lines to find molecular pathways that might lead to drug resistance.
RESULTS:
Cell lines 786-O-R and Caki-1-R resistant to axitinib were successfully constructed in vitro, and their IC50 were significantly higher than those of the sensitive cell lines (10.99 μmol/L, P < 0.01; 11.96 μmol/L, P < 0.01, respectively). Cell counting kit-8 (CCK-8) assay, colony formation, and 5-ethynyl-2 '-deoxyuridine (EdU) assay showed that compared with the sensitive lines, the proliferative ability of the resistant lines decreased, but apoptosis staining showed a significant decrease in the level of cell apoptosis of the resistant lines (P < 0.01). Although resistant to axitinib, the resistant lines had no obvious new replicated cells in the environment of 20 μmol/L axitinib. Nuclear protein 1 (NUPR1) gene was screened by transcriptome sequencing, and its RNA (P < 0.0001) and protein expression levels significantly increased in the resistant lines. Database analysis showed that NUPR1 was significantly overexpressed in ccRCC tumor tissue (P < 0.05); the ccRCC patients with higher expression ofNUPR1had a worse survival prognosis (P < 0.001). Apoptosis staining results showed that knockdown ofNUPR1inhibited the anti-apoptotic ability of the resistant lines to axitinib (786-O, P < 0.01; Caki-1, P < 0.05). WB results showed that knocking downNUPR1decreased the protein level of B-cell lymphoma-2 (BCL2), increased the protein level of BCL2-associated X protein (BAX), decreased the protein level of pro-caspase3, and increased the level of cleaved-caspase3 in the resistant lines after being treated with axitinib.
CONCLUSION
ccRCC cell lines reduce apoptosis through theNUPR1 -BAX/ BCL2 -caspase3 pathway, which is involved in the process of resistance to axitinib.
Humans
;
Carcinoma, Renal Cell/metabolism*
;
Axitinib/pharmacology*
;
Kidney Neoplasms/metabolism*
;
bcl-2-Associated X Protein
;
Nuclear Proteins
;
Cell Line, Tumor
;
Apoptosis
;
Cell Proliferation
8.Baicalin attenuates dexamethasone-induced apoptosis of bone marrow mesenchymal stem cells by activating the hedgehog signaling pathway.
Bin JIA ; Yaping JIANG ; Yao YAO ; Yingxing XU ; Yingzhen WANG ; Tao LI
Chinese Medical Journal 2023;136(15):1839-1847
BACKGROUND:
Perturbations in bone marrow mesenchymal stem cell (BMSC) differentiation play an important role in steroid-induced osteonecrosis of the femoral head (SONFH). At present, studies on SONFH concentrate upon the balance within BMSC osteogenic and adipogenic differentiation. However, BMSC apoptosis as well as proliferation are important prerequisites in their differentiation. The hedgehog (HH) signaling pathway regulates bone cell apoptosis. Baicalin (BA), a well-known compound in traditional Chinese medicine, can affect the proliferation and apoptosis of numerous cell types via HH signaling. However, the potential role and mechanisms of BA on BMSCs are unclear. Thus, we aimed to explore the role of BA in dexamethasone (Dex)-induced BMSC apoptosis in this study.
METHODS:
Primary BMSCs were treated with 10 -6 mol/L Dex alone or with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA for 24 hours followed by co-treatment with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA and 10 -6 mol/L Dex. Cell viability was assayed through the Cell Counting Kit-8 (CCK-8). Cell apoptosis was evaluated using Annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining followed by flow cytometry. The imaging and counting, respectively, of Hochest 33342/PI-stained cells were used to assess the morphological characteristics and proportion of apoptotic cells. To quantify the apoptosis-related proteins (e.g., apoptosis regulator BAX [Bax], B-cell lymphoma 2 [Bcl-2], caspase-3, and cleaved caspase-3) and HH signaling pathway proteins, western blotting was used. A HH-signaling pathway inhibitor was used to demonstrate that BA exerts its anti-apoptotic effects via the HH signaling pathway.
RESULTS:
The results of CCK-8, Hoechst 33342/PI-staining, and flow cytometry showed that BA did not significantly promote cell proliferation (CCK-8: 0 μmol/L, 100%; 2.5 μmol/L, 98.58%; 5.0 μmol/L, 95.18%; 10.0 μmol/L, 98.11%; 50.0 μmol/L, 99.38%, F = 2.33, P > 0.05), but it did attenuate the effect of Dex on apoptosis (Hoechst 33342/PI-staining: Dex+ 50.0 μmol/L BA, 12.27% vs. Dex, 39.27%, t = 20.62; flow cytometry: Dex + 50.0 μmol/L BA, 12.68% vs. Dex, 37.43%, t = 11.56; Both P < 0.05). The results of western blotting analysis showed that BA reversed Dex-induced apoptosis by activating the HH signaling pathway, which down-regulated the expression of Bax, cleaved-caspase 3, and suppressor of fused (SUFU) while up-regulating Bcl-2, sonic hedgehog (SHH), and zinc finger protein GLI-1 (GLI-1) expression (Bax/Bcl-2: Dex+ 50.0 μmol/L BA, 1.09 vs. Dex, 2.76, t = 35.12; cleaved caspase-3/caspase-3: Dex + 50.0 μmol/L BA, 0.38 vs . Dex, 0.73, t = 10.62; SHH: Dex + 50.0 μmol/L BA, 0.50 vs . Dex, 0.12, t = 34.01; SUFU: Dex+ 50.0 μmol/L BA, 0.75 vs . Dex, 1.19, t = 10.78; GLI-1: Dex+ 50.0 μmol/L BA, 0.40 vs . Dex, 0.11, t = 30.68. All P < 0.05).
CONCLUSIONS
BA antagonizes Dex-induced apoptosis of human BMSCs by activating the HH signaling pathway. It is a potential candidate for preventing SONFH.
Humans
;
Hedgehog Proteins/metabolism*
;
bcl-2-Associated X Protein
;
Caspase 3/metabolism*
;
Signal Transduction/physiology*
;
Apoptosis
;
Apoptosis Regulatory Proteins/pharmacology*
;
Dexamethasone/pharmacology*
;
Mesenchymal Stem Cells/metabolism*
;
Bone Marrow Cells
9.Mechanism of albiflorin in improvement of Alzheimer's disease based on network pharmacology and in vitro experiments.
Hui XUE ; Jing JIANG ; Yue ZHANG ; Xue-Tong MENG ; Ao XUE ; Yue QIAO ; Xia LEI ; Ji-Hui ZHAO ; Ning ZHANG
China Journal of Chinese Materia Medica 2023;48(17):4738-4746
This study aimed to explore the mechanism of albiflorin in the treatment of Alzheimer's disease(AD) based on network pharmacology, molecular docking, and in vitro experiments. Network pharmacology was used to predict the potential targets and pathways of albiflorin against AD, and molecular docking technology was used to verify the binding affinity of albiflorin to key target proteins. Finally, the AD cell model was induced by Aβ_(25-35) in rat pheochromocytoma(PC12) cells and intervened by albiflorin to validate core targets and pathways. The results of network pharmacological analysis showed that albiflorin acted on key targets such as mitogen-activated protein kinase-1(MAPK1 or ERK2), albumin(ALB), epidermal growth factor receptor(EGFR), caspase-3(CASP3), and sodium-dependent serotonin transporter(SLC6A4), and signaling pathways such as MAPK, cAMP, and cGMP-PKG. The results of molecular docking showed that albiflorin had strong binding affinity to MAPK1(ERK2). In vitro experiments showed that compared with the blank group, the model group showed decreased cell viability, decreased expression level of B-cell lymphoma 2(Bcl-2), increased Bcl-2-associated X protein(Bax), and reduced phosphorylation level of extracellular signal-regulated kinase 1/2(ERK1/2) and the relative expression ratio of p-ERK1/2 to ERK1/2. Compared with the model group, the albiflorin group showed potentiated cell viability, up-regulated expression of Bcl-2, down-regulated Bax, and increased phosphorylation level of ERK1/2 and the relative expression ratio of p-ERK1/2 to ERK1/2. These results suggest that the mechanism of albiflorin against AD may be related to its activation of the MAPK/ERK signaling pathway and its inhibition of neuronal apoptosis.
Animals
;
Rats
;
Alzheimer Disease/drug therapy*
;
bcl-2-Associated X Protein
;
Network Pharmacology
;
Molecular Docking Simulation
10.Saikosaponin D regulates apoptosis and autophagy of pancreatic cancer Panc-1 cells via Akt/mTOR pathway.
Yue-Hong GUAN ; Gui-Mei LIU ; Yu-Si LIU ; Lin-Bo LAN ; Rui ZHENG ; Xiao-Bin LIU
China Journal of Chinese Materia Medica 2023;48(19):5278-5284
This study aims to investigate the effect and mechanism of saikosaponin D on the proliferation, apoptosis, and autophagy of pancreatic cancer Panc-1 cells. The cell counting kit(CCK-8) was used to examine the effects of 7, 10, 13, 16, 19, 22, 25, and 28 μmol·L~(-1) saikosaponin D on the proliferation of Panc-1 cells. Three groups including the control(0 μmol·L~(-1)), low-concentration(10 μmol·L~(-1)) saikosaponin D, and high-concentration(16 μmol·L~(-1)) saikosaponin D groups were designed. The colony formation assay was employed to measure the effect of saikosaponin D on the colony formation rate of Panc-1 cells. The cells treated with saikosaponin D were stained with hematoxylin-eosin(HE), and the changes of cell morphology were observed. Hoechst 33258 fluorescent staining was used to detect the effect of saikosaponin D on the cell apoptosis. The autophagy staining assay kit with MDC was used to examine the effect of saikosaponin D on the autophagy of Panc-1 cells. Western blot and immunocytochemistry(ICC) were employed to examine the effect of saikosaponin D on the expression levels and distribution of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), cleaved caspase-3, autophagy-associated protein Beclin1, microtubule-associated protein light chain 3(LC3), protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated mammalian target of rapamycin(p-mTOR). The results showed that compared with the control group, saikosaponin D decreased the proliferation rate of Panc-1 cells in a dose-dependent and time-dependent manner. The colony formation rate of the cells significantly decreased after saikosaponin D treatment. Compared with the control group, the cells treated with saikosaponin D became small, accompanied by the formation of apoptotic bodies. The saikosaponin D groups showed increased apoptosis rate and autophagic vesicle accumulation. Compared with the control group, saikosaponin D up-regulated the expression of Bax, cleaved caspase3, Beclin1, LC3Ⅱ/LC3Ⅰ and down-regulated the expression of Bcl-2, caspase-3, p-Akt/Akt, and p-mTOR/mTOR. In addition, these proteins mainly existed in the cytoplasm. In conclusion, saikosaponin D can inhibit the proliferation and induce the apoptosis and autophagy of Panc-1 cells via inhibiting the Akt/mTOR pathway.
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Caspase 3
;
bcl-2-Associated X Protein
;
Beclin-1/pharmacology*
;
Cell Line, Tumor
;
TOR Serine-Threonine Kinases/genetics*
;
Apoptosis
;
Pancreatic Neoplasms/drug therapy*
;
Caspases
;
Autophagy

Result Analysis
Print
Save
E-mail