1.Asperuloside Promotes Apoptosis of Cervical Cancer Cells through Endoplasmic Reticulum Stress-Mitochondrial Pathway.
Zhi-Min QI ; Xia WANG ; Xia LIU ; Juan ZHAO
Chinese journal of integrative medicine 2024;30(1):34-41
OBJECTIVE:
To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway.
METHODS:
Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside.
RESULTS:
Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05).
CONCLUSION
Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.
Female
;
Humans
;
Uterine Cervical Neoplasms/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
HeLa Cells
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Endoplasmic Reticulum Stress
;
Cell Line, Tumor
2.Effect of total flavonoids of buckwheat flower and leaf on myocardial cell apoptosis and Wnt/β-catenin/PPARγ pathway in arrhythmic rats.
Wei-Ping HE ; Jin-Cheng LI ; Gao-Ming WANG
China Journal of Chinese Materia Medica 2023;48(1):220-225
This paper aimed to investigate the effect of total flavonoids of buckwheat flower and leaf on myocardial cell apoptosis and Wnt/β-catenin/peroxisome proliferator-activated receptor γ(PPARγ) pathway in arrhythmic rats. SD rats were randomly divided into a control group, a model group, a low-dose(20 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a medium-dose(40 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a high-dose(80 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a propranolol hydrochloride(2 mg·kg~(-1)) group, with 12 rats in each group. Except the control group, rats in other groups were prepared as models of arrhythmia by sublingual injection of 1 mL·kg~(-1) of 0.002% aconitine. After grouping and intervention with drugs, the arrhythmia, myocardial cells apoptosis, myocardial tissue glutathione peroxidase(GSH-Px), catalase(CAT), malondialdehyde(MDA), serum interleukin-6(IL-6), prostaglandin E2(PGE2) levels, myocardial tissue apoptosis, and Wnt/β-catenin/PPARγ pathway-related protein expression of rats in each group were measured. As compared with the control group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA levels in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and β-catenin protein expression levels increased significantly in the model group, whereas the GSH-Px and CAT levels, and Bcl-2 and PPARγ protein expression levels in myocardial tissues reduced significantly. As compared with the model group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA leve in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and β-catenin protein expression levels reduced in the drug intervention groups, whereas the GSH-Px and CAT levels and Bcl-2 and PPARγ protein expression levels in myocardial tissues increased. The groups of total flavonoids of buckwheat flower and leaf were in a dose-dependent manner. There was no significant difference in the levels of each index in rats between the propranolol hydrochloride group and the high-dose group of total flavonoids of buckwheat flower and leaf. The total flavonoids of buckwheat flower and leaf inhibit the activation of Wnt/β-catenin pathway, up-regulate the expression of PPARγ, reduce oxidative stress and inflammatory damage in myocardial tissues of arrhythmic rats, reduce myocardial cell apoptosis, and improve the symptoms of arrhythmia in rats.
Rats
;
Animals
;
PPAR gamma/metabolism*
;
Fagopyrum/genetics*
;
Rats, Sprague-Dawley
;
bcl-2-Associated X Protein
;
beta Catenin/metabolism*
;
Interleukin-6
;
Flavonoids/pharmacology*
;
Propranolol/pharmacology*
;
Ventricular Fibrillation
;
Dinoprostone
;
Wnt Signaling Pathway
;
Plant Leaves/metabolism*
;
Flowers/metabolism*
;
Apoptosis
;
Cardiac Complexes, Premature
3.Astragali Radix-Curcumae Rhizoma combination inhibits proliferation, migration, and invasion of colon cancer HT-29 cells by regulating EMT.
Qi YANG ; Zheng SUN ; Yi-Miao ZHU ; Dong-Yang XIANG ; Qun-Yao ZHANG ; Fang WANG ; Gang YANG ; Hao YANG ; De-Cai TANG ; Xiao-Yu WU
China Journal of Chinese Materia Medica 2023;48(3):736-743
This study aims to investigate the effect of Astragali Radix-Curcumae Rhizoma(AC) combination on the proliferation, migration, and invasion of colon cancer HT-29 cells based on epithelial-mesenchymal transition(EMT). HT-29 cells were respectively treated with 0, 3, 6 and 12 g·kg~(-1) AC-containing serum for 48 h. The survival and growth of cells were measured by thiazole blue(MTT) colorimetry, and the proliferation, migration, and invasion of cells were detected by 5-ethynyl-2'-deoxyuridine(EdU) test and Transwell assay. Cell apoptosis was examined by flow cytometry. The BALB/c nude mouse model of subcutaneous colon cancer xenograft was established, and then model mice were classified into blank control group, 6 g·kg~(-1) AC group, and 12 g·kg~(-1) AC group. The tumor weight and volume of mice were recorded, and the histopathological morphology of the tumor was observed based on hematoxylin-eosin(HE) staining. The expression of apoptosis-associated proteins B-cell lymphoma-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), and cleaved caspase-3, and EMT-associated proteins E-cadherin, MMP9, MMP2 and vimentin in HT-29 cells and mouse tumor tissues after the treatment of AC was determined by Western blot. The results showed that cell survival rate and the number of cells at proliferation stage decreased compared with those in the blank control group. The number of migrating and invading cells reduced and the number of apoptotic cells increased in the administration groups compared with those in the blank control group. As for the in vivo experiment, compared with the blank control group, the administration groups had small tumors with low mass and shrinkage of cells and karyopycnosis in the tumor tissue, indicating that the AC combination may improve EMT. In addition, the expression of Bcl2 and E-cadherin increased and the expression of Bax, caspase-3, cleaved caspase-3, MMP9, MMP2, and vimentin decreased in HT-29 cells and tumor tissues in each administration group. In summary, the AC combination can significantly inhibit the proliferation, invasion, migration, and EMT of HT-29 cells in vivo and in vitro and promote the apoptosis of colon cancer cells.
Humans
;
Animals
;
Mice
;
Caspase 3
;
Matrix Metalloproteinase 2
;
Matrix Metalloproteinase 9
;
Vimentin
;
HT29 Cells
;
bcl-2-Associated X Protein
;
Colonic Neoplasms
;
Cell Proliferation
4.Effect of Guizhi Fuling Capsule on Apoptosis of Myeloma Cells Through Mitochondrial Apoptosis Pathway.
Run-Jie SUN ; Jie XU ; Wei GAO ; Yan-Yu ZHANG ; Xiao-Qi SUN ; Lin JI ; Xing CUI
Chinese journal of integrative medicine 2023;29(2):127-136
OBJECTIVE:
To observe the effects of Guizhi Fuling Capsule (GZFLC) on myeloma cells and explore the mechanisms.
METHODS:
MM1S and RPMI 8226 cells were co-cultured with different concentrations of serum and the cell experiments were divided into negative (10%, 20% and 40%) groups, GZFLC (10%, 20%, and 40%) groups and a control group. Cell counting kit-8 (CCK-8) assays and flow cytometry were used to detect the viability and apoptosis levels of myeloma cells. The effects on mitochondria were examined by reactive oxygen specie (ROS) and tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1) assays. Western blot was used to detect the expression of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cleaved caspase-3, -9, cytochrome C (Cytc) and apoptotic protease-activating factor 1 (Apaf-1). RPMI 8226 cells (2 × 107) were subcutaneously inoculated into 48 nude mice to study the in vivo antitumor effects of GZFLC. The mice were randomly divided into four groups using a completely randomized design, the high-, medium-, or low-dose GZFLC (840, 420, or 210 mg/kg per day, respectively) or an equal volume of distilled water, administered daily for 15 days. The tumor volume changes in and survival times of the mice in the GZFLC-administered groups and a control group were observed. Cytc and Apaf-1 expression levels were detected by immunohistochemistry.
RESULTS:
GZFLC drug serum decreased the viability and increased the apoptosis of myeloam cells (P<0.05). In addition, this drug increased the ROS levels and decreased the mitochondrial membrane potential (P<0.01). Western blot showed that the Bcl-2/Bax ratios were decreased in the GZFLC drug serum-treated groups, whereas the expression levels of cleaved caspase-3, -9, Cytc and Apaf-1 were increased (all P<0.01). Over time, the myeloma tumor volumes of the mice in the GZFLC-administered groups decreased, and survival time of the mice in the GZFLC-administered groups were longer than that of the mice in the control group. Immunohistochemical analysis of tumor tissues from the mice in the GZFLC-administered groups revealed that the Cytc and Apaf-1 expression levels were increased (P<0.05).
CONCLUSION
GZFLC promoted apoptosis of myeloma cells through the mitochondrial apoptosis pathway and significantly reduced the tumor volumes in mice with myeloma, which prolonged the survival times of the mice.
Mice
;
Animals
;
Caspase 3/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Wolfiporia
;
Multiple Myeloma/drug therapy*
;
bcl-2-Associated X Protein/metabolism*
;
Mice, Nude
;
Apoptosis
;
Mitochondria/metabolism*
5.MiR -18a -5p aggravates homocysteine -induced myocardial injury via autophagy.
Juan YIN ; Longlong HU ; Xueling HAN ; Lu CHEN ; Lingling YU ; Yinhui LU
Journal of Central South University(Medical Sciences) 2023;48(1):24-33
OBJECTIVES:
Hyperhomocysteinaemia (Hcy) is an independent risk factor for cardiovascular and cerebrovascular diseases. MicroRNA (miR)-18a-5p is closely related to cardiovascular diseases. This study aims to investigate the effects of miR-18a-5p on homocysteine (Hcy)-induced myocardial cells injury.
METHODS:
H9c2 cells were transfected with miR-18a-5p mimic/miR-18a-5p mimic negative control (NC) or combined with Hcy for intervention, and untreated cells were set as a control group. The transfection efficiency was verified by real-time RT-PCR, and cell counting kit-8 (CCK-8) assay was used to determine cell viability. Flow cytometry was used to detect apoptosis and reactive oxygen species (ROS) levels. Western blotting was performed to measure the protein levels of microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin1, p62, Bax, Bcl-2, and Notch2. Dual luciferase reporter assay was used to detect the interaction of miR-18a-5p with Notch2.
RESULTS:
Compared with the control, treatment with Hcy or transfection with miR-18a-5p mimic alone, or combined treatment with Hcy and miR-18a-5p mimic/miR-18a-5p mimic NC significantly reduced the H9c2 cell viability, promoted apoptosis and ROS production, up-regulated the expressions of Bax and Beclin, down-regulated the expressions of Bcl-2, p62, and Notch2, and increased the ratio of LC3-II/LC3-I (all P<0.05). Compared with the combined intervention of miR-18a-5p mimic NC and Hcy group, the above indexes were more significantly changed in the combined intervention of miR-18a-5p mimic and Hcy group, and the difference between the 2 groups was statistically significant (all P<0.05). There is a targeted binding between Notch2 and miR-18a-5p.
CONCLUSIONS
MiR-18a-5p could induce autophagy and apoptosis via increasing ROS production in cardiomyocytes, and aggravate Hcy-induced myocardial injury. Notch2 is a target of miR-18a-5p.
Apoptosis/genetics*
;
Autophagy/genetics*
;
bcl-2-Associated X Protein
;
MicroRNAs/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Reactive Oxygen Species
;
Rats
;
Animals
;
Myocytes, Cardiac/drug effects*
;
Homocysteine/adverse effects*
;
Hyperhomocysteinemia
6.Shikonin induces hepatocellular carcinoma cell apoptosis by suppressing PKM2/PHD3/HIF-1α signaling pathway.
Huan Huan ZHANG ; Zhuo CHEN ; Xiang Di ZHAO ; Qiang HUO ; Xiu CHENG
Journal of Southern Medical University 2023;43(1):92-98
OBJECTIVE:
To investigate the mechanism of shikonin-induced death of human hepatocellular carcinoma SMMC-7721 cells.
METHODS:
Cultured SMMC-7721 cells and normal hepatocytes (L-02 cells) were treated with 4, 8, or 16 μmol/L shikonin, and the changes in cell viability was assessed using MTT assay. The levels of ATP and lactic acid in the cell cultures were detected using commercial kits. Co-immunoprecipitation and immunofluorescence staining were used to determine the relationship among pyruvate kinase M2 (PKM2), prolyl hydroxylase 3 (PHD3), and hypoxia-inducible factor-1α (HIF-1α). The expressions of PHD3, PKM2, HIF-1α, Bax, cleaved caspase-3, and Bcl-2 in SMMC-7721 cells were detected with Western blotting, and cell apoptosis was analyzed with annexin V-FITC/PI staining. The effects of RNA interference of PKM2 on PHD3 and HIF-1α expressions in SMMC-7721 cells were detected using Western blotting.
RESULTS:
The IC50 of shikonin against SMMC-7721 and L-02 cells was 8.041 μmol/L and 31.75 μmol/L, respectively. Treatment with shikonin significantly inhibited the protein expressions of PKM2, HIF-1α and PHD3 and nuclear translocation of PKM2 and HIF-1α in SMMC-7721 cells. Coimmunoprecipitation and immunofluorescence staining confirmed that shikonin inhibited the formation of PKM2/PHD3/HIF-1α complex and significantly reduced the contents of lactic acid and ATP in SMMC-7721 cells (P < 0.05). The expressions of PHD3 and HIF-1α decreased significantly after PKM2 knockdown (P < 0.05). Shikonin treatment significantly increased the apoptosis rate, enhanced the expressions of Bax and cleaved caspase-3, and decreased Bcl-2 expression in SMMC-7721 cells (P < 0.05).
CONCLUSIONS
Shikonin induces apoptosis of SMMC-7721 cells possibly by inhibiting aerobic glycolysis through the PKM2/PHD3/HIF-1α signaling pathway to cause energy supply dysfunction in the cells.
Humans
;
Prolyl Hydroxylases
;
Carcinoma, Hepatocellular
;
Caspase 3
;
bcl-2-Associated X Protein
;
Liver Neoplasms
;
Signal Transduction
;
Apoptosis
;
Adenosine Triphosphate
7.Intermittent heat exposure induces thoracic aorta injury in spontaneously hypertensive rats by activating the AMPK/mTOR/ULK1 pathway.
Chun Li YANG ; Shu Jing XUE ; Xiao Min WU ; Ling HOU ; Tao XU ; Guang Hua LI
Journal of Southern Medical University 2023;43(2):191-198
OBJECTIVE:
To investigate the effects of different manners of heat exposure on thoracic aorta injury in spontaneously hypertensive rats (SHRs) and explore the underlying mechanism.
METHODS:
Normal 6 to 7-week-old male SHRs were randomized into control group (cage at room temperature), intermittent heat exposure group (SHR-8 group, exposed to 32 ℃ for 8 h daily for 7 days) and SHR-24 group (with continuous exposure to 32 ℃ for 7 days). After the treatments, the pathologies of the thoracic aorta of the rats were observed with HE staining, and the expressions of Beclin1, LC3B and p62 were detected with Western blotting and immunofluorescence assay; TUNEL staining was used to observe cell apoptosis in the thoracic aorta, and the expressions of caspase-3, Bax, and Bcl-2 were detected using Western blotting. The effects of intraperitoneal injections of 3-MA (an autophagy agonist), rapamycin (an autophagy inhibitor) or compound C 30 min before intermittent heat exposure on the expressions of proteins associated with autophagy, apoptosis and the AMPK/mTOR/ULK1 pathway in the aorta were examined with immunohistochemistry.
RESULTS:
In SHR-8 group, the rats showed incomplete aortic intima with disordered cell distribution and significantly increased expressions of Beclin1, LC3II/LC3I and Bax, lowered expressions of p62 and Bcl-2, and increased apoptotic cells in the thoracic aorta (P < 0.05). Pretreatment with 3-MA obviously inhibited the expressions of autophagy- and apoptosis-related proteins, whereas rapamycin promoted their expressions. Compared with the control group, the rats in SHR-8 group had significantly down-regulated p-mTOR and up-regulated p-AMPK and p-ULK1 expression of in the aorta; Treatment with compound C obviously lowered the expressions of p-AMPK and p-ULK1 and those of LC3B and Beclin1 as well.
CONCLUSION
In SHRs, intermittent heat exposure causes significant pathologies and promotes autophagy and apoptosis in the thoracic aorta possibly by activating the AMPK/mTOR/ULK1 pathway.
Rats
;
Male
;
Animals
;
Rats, Inbred SHR
;
AMP-Activated Protein Kinases/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Aorta, Thoracic
;
Beclin-1
;
Hot Temperature
;
TOR Serine-Threonine Kinases/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Aortic Diseases
;
Autophagy
;
Autophagy-Related Protein-1 Homolog/metabolism*
8.Mechanism of nuclear protein 1 in the resistance to axitinib in clear cell renal cell carcinoma.
Yun Chong LIU ; Zong Long WU ; Li Yuan GE ; Tan DU ; Ya Qian WU ; Yi Meng SONG ; Cheng LIU ; Lu Lin MA
Journal of Peking University(Health Sciences) 2023;55(5):781-792
OBJECTIVE:
To explore the potential mechanism of resistance to axitinib in clear cell renal cell carcinoma (ccRCC), with a view to expanding the understanding of axitinib resistance, facilitating the design of more specific treatment options, and improving the treatment effectiveness and survival prognosis of patients.
METHODS:
By exploring the half maximum inhibitory concentration (IC50) of axitinib on ccRCC cell lines 786-O and Caki-1, cell lines resistant to axitinib were constructed by repeatedly stimulated with axitinib at this concentration for 30 cycles in vitro. Cell lines that were not treated by axitinib were sensitive cell lines. The phenotypic differences of cell proliferation and apoptosis levels between drug resistant and sensitive lines were tested. Genes that might be involved in the drug resistance process were screened from the differentially expressed genes that were co-upregulated in the two drug resistant lines by transcriptome sequencing. The expression level of the target gene in the drug resistant lines was verified by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB). The expression differences of the target gene in ccRCC tumor tissues and adjacent tissues were analyzed in the Gene Expression Profiling Interactive Analysis (GEPIA) public database, and the impact of the target gene on the prognosis of ccRCC patients was analyzed in the Kaplan-Meier Plotter (K-M Plotter) database. After knocking down the target gene in the drug resistant lines using RNA interference by lentivirus vector, the phenotypic differences of the cell lines were tested again. WB was used to detect the levels of apoptosis-related proteins in the different treated cell lines to find molecular pathways that might lead to drug resistance.
RESULTS:
Cell lines 786-O-R and Caki-1-R resistant to axitinib were successfully constructed in vitro, and their IC50 were significantly higher than those of the sensitive cell lines (10.99 μmol/L, P < 0.01; 11.96 μmol/L, P < 0.01, respectively). Cell counting kit-8 (CCK-8) assay, colony formation, and 5-ethynyl-2 '-deoxyuridine (EdU) assay showed that compared with the sensitive lines, the proliferative ability of the resistant lines decreased, but apoptosis staining showed a significant decrease in the level of cell apoptosis of the resistant lines (P < 0.01). Although resistant to axitinib, the resistant lines had no obvious new replicated cells in the environment of 20 μmol/L axitinib. Nuclear protein 1 (NUPR1) gene was screened by transcriptome sequencing, and its RNA (P < 0.0001) and protein expression levels significantly increased in the resistant lines. Database analysis showed that NUPR1 was significantly overexpressed in ccRCC tumor tissue (P < 0.05); the ccRCC patients with higher expression ofNUPR1had a worse survival prognosis (P < 0.001). Apoptosis staining results showed that knockdown ofNUPR1inhibited the anti-apoptotic ability of the resistant lines to axitinib (786-O, P < 0.01; Caki-1, P < 0.05). WB results showed that knocking downNUPR1decreased the protein level of B-cell lymphoma-2 (BCL2), increased the protein level of BCL2-associated X protein (BAX), decreased the protein level of pro-caspase3, and increased the level of cleaved-caspase3 in the resistant lines after being treated with axitinib.
CONCLUSION
ccRCC cell lines reduce apoptosis through theNUPR1 -BAX/ BCL2 -caspase3 pathway, which is involved in the process of resistance to axitinib.
Humans
;
Carcinoma, Renal Cell/metabolism*
;
Axitinib/pharmacology*
;
Kidney Neoplasms/metabolism*
;
bcl-2-Associated X Protein
;
Nuclear Proteins
;
Cell Line, Tumor
;
Apoptosis
;
Cell Proliferation
9.Regulation of Baicalin on Growth of Extranodal NK/T Cell Lymphoma Cells through FOXO3/CCL22 Signaling Pathway.
Xiao-Hui DUAN ; Hong LI ; Yao LYU ; Jing LIU ; Shi-Xiong WANG ; Zhen-Tian WU ; Bing-Xuan WANG ; Ming LU ; Jian-Hong WANG ; Rong LIANG
Journal of Experimental Hematology 2023;31(3):730-738
OBJECTIVE:
To investigate the effect of baicalin on the growth of extranodal NK/T cell lymphoma (ENKTCL) cells and its related mechanism.
METHODS:
Normal NK cells and human ENKTCL cells lines SNK-6 and YTS were cultured, then SNK-6 and YTS cells were treated with 5, 10, 20 μmol/L baicalin and set control. Cell proliferation and apoptosis was detected by Edu method and FCM method, respectively, and expressions of BCL-2, Bax, FOXO3 and CCL22 proteins were detected by Western blot. Interference plasmids were designed and synthesized. FOXO3 siRNA interference plasmids and CCL22 pcDNA overexpression plasmids were transfected with PEI transfection reagent. Furthermore, animal models were established for validation.
RESULTS:
In control group and 5, 10, 20 μmol/L baicalin group, the proliferation rate of SNK-6 cells was (56.17±2.96)%, (51.92±4.63)%, (36.42±1.58)%, and (14.60±2.81)%, respectively, while that of YTS cells was (58.85±2.98)%, (51.38±1.32)%, (34.75±1.09)%, and (15.45±1.10)%, respectively. In control group and 5, 10, 20 μmol/L baicalin group, the apoptosis rate of SNK-6 cells was (5.93±0.74)%, (11.78±0.34)%, (28.46±0.44)%, and (32.40±0.37)%, respectively, while that of YTS cells was (7.93±0.69)%, (16.29±1.35)%, (33.91±1.56)%, and (36.27±1.06)%, respectively. Compared with control group, the expression of BCL-2 protein both in SNK-6 and YTS cells decreased significantly (P<0.001), and the expression of Bax protein increased in SNK-6 cells only when the concentration of baicalin was 20 μmol/L (P<0.001), while that in YTS cells increased in all three concentrations(5, 10, 20 μmol/L) of baicalin (P<0.001). The expression of FOXO3 protein decreased while CCL22 protein increased in ENKTCL cell lines compared with human NK cells (P<0.001), but the expression of FOXO3 protein increased (P<0.01) and CCL22 protein decreased after baicalin treatment (P<0.001). Animal experiments showed that baicalin treatment could inhibit tumor growth. The expression of CCL22 protein in ENKTCL tissue of nude mice treated with baicalin decreased compared with control group (P<0.01), while the FOXO3 protein increased (P<0.05). In addition, FOXO3 silencing resulted in the decrease of FOXO3 protein expression and increase of CCL22 protein expression (P<0.01, P<0.001).
CONCLUSION
Baicalin can inhibit proliferation and promote apoptosis of ENKTCL cell lines SNK-6 and YTS, up-regulate the expression of Bax protein, down-regulate the expression of BCL-2 protein, and down-regulate the expression of CCL22 protein mediated by FOXO3. Animal experiment shown that the baicalin can inhibit tumor growth. Baicalin can inhibit the growth and induce apoptosis of ENKTCL cells through FOXO3/CCL22 signaling pathway.
Animals
;
Mice
;
Humans
;
Lymphoma, Extranodal NK-T-Cell/pathology*
;
Forkhead Box Protein O3/metabolism*
;
bcl-2-Associated X Protein/pharmacology*
;
Mice, Nude
;
Signal Transduction
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Chemokine CCL22/pharmacology*
10.Cordycepin, a metabolite of Cordyceps militaris, inhibits xenograft tumor growth of tongue squamous cell carcinoma in nude mice.
Qingwei ZHENG ; Yidan SHAO ; Wanting ZHENG ; Yingxu ZOU
Journal of Southern Medical University 2023;43(6):873-878
OBJECTIVE:
To evaluate the inhibitory effect of cordycepin on oral cancer xenograft in nude mice and explore the underlying mechanisms.
METHODS:
Sixteen BALB/c mice bearing subcutaneous human tongue squamous cell carcinoma (TSCC) TCA-8113 cell xenografts were randomized into model group and cordycepin treatment group for daily treatment with saline and cordycepin for 4 weeks. After the treatment, the tumor xenografts were dissected and weighed to assess the tumor inhibition rate. Histological changes in the heart, spleen, liver, kidney, and lung of the mice were evaluated with HE staining, and tumor cell apoptosis was examined using TUNEL staining; The expressions of Bax, Bcl-2, GRP78, CHOP, and caspase-12 in the xenografts were detected using RT-qPCR and Western blotting.
RESULTS:
Cordycepin treatment resulted in a tumor inhibition rate of 56.09% in the nude mouse models, induced obvious changes in tumor cell morphology and significantly enhanced apoptotic death of the tumor cells without causing pathological changes in the vital organs. Cordycepin treatment also significantly reduced Bcl-2 expression (P < 0.05) and increased Bax, GRP78, CHOP, and caspase-12 expressions at both the RNA and protein levels in the tumor tissues.
CONCLUSION
Cordycepin treatment can induce apoptotic death of TCA-8113 cell xenografts in nude mice via the endogenous mitochondrial pathway and endoplasmic reticulum stress pathways.
Humans
;
Animals
;
Mice
;
Carcinoma, Squamous Cell/drug therapy*
;
Heterografts
;
Mice, Nude
;
Tongue Neoplasms/drug therapy*
;
Cordyceps
;
Caspase 12
;
Endoplasmic Reticulum Chaperone BiP
;
bcl-2-Associated X Protein
;
Tongue

Result Analysis
Print
Save
E-mail