1.Exploration of cross-cultivar group characteristics of a new cultivar of Prunus mume 'Zhizhang Guhong Chongcui'.
Xiaotian QIN ; Mengge GUO ; Shaohua QIN ; Ruidan CHEN
Chinese Journal of Biotechnology 2024;40(1):239-251
'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.
Animals
;
Anthocyanins
;
DNA Shuffling
;
Flowers/genetics*
;
Porifera
;
Prunus/genetics*
;
Glutamine/analogs & derivatives*
;
Plant Extracts
2.Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.
Yue ZHANG ; Yan-Wei XIAO ; Jing-Xin MA ; Ao-Xue WANG
Chinese journal of integrative medicine 2024;30(3):213-221
OBJECTIVE:
To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.
METHODS:
HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.
RESULTS:
HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).
CONCLUSION
HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
ErbB Receptors/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
RNA, Messenger/genetics*
;
Cell Movement
;
Cell Line, Tumor
;
Chalcone/analogs & derivatives*
;
Quinones
3.Effect and mechanism of Poria cocos polysaccharides on myocardial cell apoptosis in rats with myocardial ischemia-reperfusion injury by regulating Rho-ROCK signaling pathway.
Jun XIE ; Yuan-Yuan WANG ; Ju-Xin LI ; Feng-Min GAO
China Journal of Chinese Materia Medica 2023;48(23):6434-6441
This study aimed to investigate the effect and underlying mechanism of Poria cocos polysaccharides(PCP) on myocardial cell apoptosis in the rat model of myocardial ischemia-reperfusion injury(MI/RI). Male SPF-grade SD rats were randomly divided into a sham group(saline), a model group(saline), low-and high-dose PCP groups(100 and 200 mg·kg~(-1)), and a fasudil group(10 mg·kg~(-1)), with 16 rats in each group. Except for the sham group, the other four groups underwent left anterior descending coronary artery ligation for 30 min followed by reperfusion for 2 h to establish the MI/RI model. The myocardial infarct area was assessed by TTC staining. Histological changes were observed through HE staining. Myocardial cell apoptosis was evaluated using TUNEL staining. Serum lactate dehydrogenase(LDH), creatine kinase MB(CK-MB), interleukin-1β(IL-1β) and IL-18 levels, myocardial superoxide dismutase(SOD) activity and malondialdehyde(MDA) levels were detected by ELISA. Protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2 associated X protein(Bax), cleaved caspase-3, Ras homolog gene A(RhoA), myosin phosphatase target subunit 1(MYPT-1), phosphorylated MYPT-1(p-MYPT-1), and Rho-associated coiled-coil forming kinase 1(ROCK 1) were measured by Western blot. Pathological staining of myocardial tissue revealed that in the model group, there was focal necrosis of myocardial tissue, myocardial cell swelling, unclear boundaries, and neutrophil infiltration. These pathological changes were alleviated in the low-and high-dose PCP groups and the fasudil group. Compared with the model group, the low-and high-dose PCP groups and the fasudil group showed significantly reduced myocardial infarct area and myocardial cell apoptosis rate. Compared with the sham group, the model group exhibited elevated serum LDH, CK-MB, IL-1β and IL-18 levels, increased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and decreased myocardial SOD levels and Bcl-2 protein expression. Compared with the model group, the PCP groups and the fasudil group showed lowered serum LDH, CK-MB, IL-1β and IL-18 levels, decreased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and increased myocardial SOD levels and Bcl-2 protein expression. PCP exhibited a certain preventive effect on myocardial tissue pathological damage and myocardial cell apoptosis in MI/RI rats, possibly related to the inhibition of the Rho-ROCK signaling pathway activation, thereby reducing oxidative stress and inflammatory responses.
Rats
;
Male
;
Animals
;
Myocardial Reperfusion Injury/drug therapy*
;
bcl-2-Associated X Protein/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 3/metabolism*
;
Interleukin-18
;
Wolfiporia
;
Signal Transduction
;
Myocardial Infarction/drug therapy*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Creatine Kinase, MB Form
;
Apoptosis
;
Polysaccharides/pharmacology*
;
Superoxide Dismutase/metabolism*
;
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives*
4.Small-molecule anti-COVID-19 drugs and a focus on China's homegrown mindeudesivir (VV116).
Qiuyu CAO ; Yi DING ; Yu XU ; Mian LI ; Ruizhi ZHENG ; Zhujun CAO ; Weiqing WANG ; Yufang BI ; Guang NING ; Yiping XU ; Ren ZHAO
Frontiers of Medicine 2023;17(6):1068-1079
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic agents that target severe acute respiratory syndrome coronavirus 2 to control viral infection. So far, a few small-molecule antiviral drugs, including nirmatrelvir-ritonavir (Paxlovid), remdesivir, and molnupiravir have been marketed for the treatment of COVID-19. Nirmatrelvir-ritonavir has been recommended by the World Health Organization as an early treatment for outpatients with mild-to-moderate COVID-19. However, the existing treatment options have limitations, and effective treatment strategies that are cost-effective and convenient for tackling COVID-19 are still needed. To date, four domestically developed oral anti-COVID-19 drugs have been granted conditional market approval in China. These drugs include azvudine, simnotrelvir-ritonavir (Xiannuoxin), leritrelvir, and mindeudesivir (VV116). Preclinical and clinical studies have explored the efficacy and tolerability of mindeudesivir and supported its early use in mild-to-moderate COVID-19 cases at high risk for progression. In this review, we discuss the most recent findings regarding the pharmacological mechanism and therapeutic effects focusing on mindeudesivir and other small-molecule antiviral agents for COVID-19. These findings will expand our understanding and highlight the potential widespread application of China's homegrown anti-COVID-19 drugs.
Humans
;
Ritonavir/therapeutic use*
;
COVID-19
;
Antiviral Agents/therapeutic use*
;
China
;
Nitriles
;
Lactams
;
Proline
;
Adenosine/analogs & derivatives*
;
Leucine
5.Mediation Effects of Placental Inflammatory Transcriptional Biomarkers on the Sex-Dependent Associations between Maternal Phthalate Exposure and Infant Allergic Rhinitis: A Population-Based Cohort Study.
Jian Qing WANG ; Zhi Juan LI ; Hui GAO ; Jie SHENG ; Chun Mei LIANG ; Ya Bin HU ; Xun XIA ; Kun HUANG ; Su Fang WANG ; Peng ZHU ; Jia Hu HAO ; Fang Biao TAO
Biomedical and Environmental Sciences 2022;35(8):711-721
OBJECTIVE:
Prenatal phthalate exposure has been associated with placental inflammatory factors and infant allergic rhinitis (AR). However, the results are inconclusive. We designed a population-based cohort study to examine the effects of placental inflammatory biomarkers on the sex-dependent associations between maternal phthalate exposure and infant AR.
METHODS:
A total of 2,348 pregnant women from Ma'anshan, Anhui Province, China, who were screened before antenatal visits and met the inclusion criteria, were included in the present study. We assessed AR in their offspring aged 36 months with a questionnaire. Quantitative PCR was performed to measure placental inflammatory factor mRNAs. The independent samples t-test and multivariable logistic regression were used to determine the associations between infant AR and maternal phthalates.
RESULTS:
Childhood AR may be related to education and family monthly income ( P = 0.01). The phthalate metabolites, mono (2-ethylhexyl) phthalate (MEHP), mono (2-ethyl-5-hydroxyl) phthalate (MEHHP), in pregnant women were associated with a significantly increased risk for infant AR in males [ P < 0.05; odds ratio ( OR): 1.285; 95% confidence interval ( CI): 1.037-1.591, and OR: 1.232, 95% CI: 1.008-1.507, respectively], but not females. Additionally, irritably-increased expression levels of HO-1 and IL-4 were associated with AR in male infants ( OR: 1.175; 95% CI: 1.038-1.329 and OR: 1.181; 95% CI: 1.056-1.322, respectively). The association between maternal urinary MEHHP and placental HO-1 was marginally significant according to mediation analysis.
CONCLUSION
The associations of maternal MEHHP and MEOHP levels with fetal AR in males were significant. Placental HO-1 was a fractional mediator in the associations between MEHHP and AR. Thus, the placenta should be further investigated as a potential mediator of maternal exposure-induced disease risk in children.
Biomarkers
;
Child, Preschool
;
Cohort Studies
;
Diethylhexyl Phthalate/analogs & derivatives*
;
Female
;
Humans
;
Interleukin-4/pharmacology*
;
Male
;
Maternal Exposure/adverse effects*
;
Phthalic Acids/adverse effects*
;
Placenta
;
Pregnancy
;
Rhinitis, Allergic/epidemiology*
6.H-NS Represses Biofilm Formation and c-di-GMP Synthesis in Vibrio parahaemolyticus.
Xing Fan XUE ; Miao Miao ZHNAG ; Jun Fang SUN ; Xue LI ; Qi Min WU ; Zhe YIN ; Wen Hui YANG ; Bin NI ; Ling Fei HU ; Dong Sheng ZHOU ; Ren Fei LU ; Yi Quan ZHANG
Biomedical and Environmental Sciences 2022;35(9):821-829
OBJECTIVE:
This study aimed to investigate the regulation of histone-like nucleoid structuring protein (H-NS) on biofilm formation and cyclic diguanylate (c-di-GMP) synthesis in Vibrio parahaemolyticus RIMD2210633.
METHODS:
Regulatory mechanisms were analyzed by the combined utilization of crystal violet staining, quantification of c-di-GMP, quantitative real-time polymerase chain reaction, LacZ fusion, and electrophoretic-mobility shift assay.
RESULTS:
The deletion of hns enhanced the biofilm formation and intracellular c-di-GMP levels in V. parahaemolyticus RIMD2210633. H-NS can bind the upstream promoter-proximal DNA regions of scrA, scrG, VP0117, VPA0198, VPA1176, VP0699, and VP2979 to repress their transcription. These genes encode a group of proteins with GGDEF and/or EAL domains associated with c-di-GMP metabolism.
CONCLUSION
One of the mechanisms by which H-NS represses the biofilm formation by V. parahaemolyticus RIMD2210633 may be via repression of the production of intracellular c-di-GMP.
Bacterial Proteins/metabolism*
;
Biofilms
;
Cyclic GMP/analogs & derivatives*
;
Gene Expression Regulation, Bacterial
;
Gentian Violet
;
Histones/metabolism*
;
Vibrio parahaemolyticus/genetics*
7.Effects of Combination of 1,25(OH) 2D 3 and TLR-4 Inhibitor on the Damage to HaCaT Cells Caused by UVB Irradiation.
Peng CHEN ; Chuan Ning ZHUANG ; Jia Jing CUI ; Ping Wei WANG ; Dong Ge LIU ; Shu Qi YAN ; Li Ting ZHOU ; Shu Ping REN
Biomedical and Environmental Sciences 2022;35(11):1051-1062
OBJECTIVE:
Vitamin D and Toll-like receptor-4 (TLR-4) inhibition are involved in the protection of keratinocytes. The effects of combination of 1,25(OH) 2D 3 and TLR-4 inhibitor on the protection of keratinocytes against ultraviolet radiation B (UVB) irradiation remain unclear. This study was undertaken to explore the effects of combination of 1,25(OH) 2D 3 and TAK-242 (TLR-4 inhibitor) on the damage to HaCaT cells caused by UVB irradiation.
METHODS:
In vitro, HaCaT cells were treated with 1,25(OH) 2D 3 or/and TAK-242 prior to UVB irradiation at the intensity of 20 mJ/cm 2, then the production of reactive oxygen species (ROS), cell migration, apoptosis of cells, and the expression of oxidative stress, endoplasmic reticulum stress, and apoptosis related proteins were determined.
RESULTS:
Compared with the HaCaT cells treated with 1,25(OH) 2D 3 or TAK-242, the cells treated with both 1,25(OH) 2D 3 and TAK-242 showed, 1) significantly lower production of ROS ( P < 0.05); 2) significantly less apoptosis of HaCaT cells ( P < 0.05); 3) significantly lower expression of NF- κB, Caspase-8, Cyto-C, Caspase-3 ( P < 0.05).
CONCLUSION
The combination of 1,25(OH) 2D 3 and TAK-242 could produce a better protection for HaCaT cells via inhibiting the oxidative stress, endoplasmic reticulum stress and apoptosis than 1,25(OH) 2D 3 or TAK-242 alone.
Humans
;
HaCaT Cells
;
NF-kappa B
;
Reactive Oxygen Species
;
Toll-Like Receptor 4
;
Ultraviolet Rays/adverse effects*
;
Cholecalciferol/analogs & derivatives*
8.Research progress of c-di-GMP in the regulation of Escherichia coli biofilm.
Yunjiang HE ; Weijuan JIA ; Shanshan CHI ; Qinglei MENG ; Yunjiao CHEN ; Xueli WANG
Chinese Journal of Biotechnology 2022;38(8):2811-2820
Escherichia coli biofilm is a complex membrane aggregation produced by the adhesion and secretion of extracellular polymeric substances by E. coli cells aggregated on specific media. Pathogenic E. coli will evade the immune system and the impact of various harmful factors in the environment after the formation of biofilm, causing sustained and even fatal damage to the host. Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger ubiquitous in bacteria and plays a crucial role in regulating biofilm formation. This paper reviewed the recent studies about the role of c-di-GMP in the movement, adhesion, and EPS production mechanism of E. coli during biofilm formation, aiming to provide a basis for inhibiting E. coli biofilm from the perspective of c-di-GMP.
Bacterial Proteins/genetics*
;
Biofilms
;
Cyclic GMP/analogs & derivatives*
;
Escherichia coli/metabolism*
;
Escherichia coli Proteins/metabolism*
;
Gene Expression Regulation, Bacterial
9.Determination of neohesperidin and naringin in Qingfei Paidu Granules by RP-HPLC and their transfer rates in preparation process.
Yan ZHANG ; Hong-Jie WANG ; Li-Xin YANG ; Yan-Yan ZHOU ; Hai-Yu ZHAO ; Ming-Li LI ; Bao-Lin BIAN ; Hua-Kai WU ; Hua-Ying ZHU ; Nan SI ; Ling HAN
China Journal of Chinese Materia Medica 2022;47(16):4372-4376
The present study established an RP-HPLC method for simultaneous determination of two active components in Qingfei Paidu Granules and investigated the transfer rates of neohesperidin and naringin in the preparation process to provide references for improving the quality control standard and production of Qingfei Paidu Granules.RP-HPLC was performed on a YMC Triart C_(18) column(4.6 mm×150 mm, 5 μm)with column temperature of 30 ℃, acetonitrile(A) and 0.2% phosphoric acid solution(B) as mobile phases for gradient elution at a flow rate of 1.0 mL·min~(-1) and detection wavelength of 284 nm.Good linearity was observed for naringin at 0.10-1.0 μg(R~2=0.999 9) and neohesperidin at 0.12-1.2 μg(R~2=0.999 9).The average recovery of naringin was 99.52% with an RSD of 1.2%, and that of neohesperidin was 100.8% with an RSD of 1.2%.The transfer rates of naringin and neohesperidin between medicinal materials, extracts, concentrates, and granules were measured by this method.The average transfer rate of naringin from medicinal materials to granules was 54.89%±4.38%, and that of neohesperidin was 57.63%±5.88%.The process from medicinal materials to extracts was presumedly the key link affecting the whole preparation process.The established method is simple and sensitive and can be adopted for the quality control of Qingfei Paidu Granules.Meanwhile, it can be used to investigate the transfer rate of neohesperidin and naringin in the preparation of Qingfei Paidu Granules, and further improve the quality control standard of Aurantii Fructus Immaturus in Qingfei Paidu Granules.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal
;
Flavanones
;
Hesperidin/analogs & derivatives*
10.Potential pharmacodynamic substances of Laportea bulbifera in treatment of rheumatoid arthritis based on serum pharmacochemistry and pharmacology.
Juan TANG ; Qing ZHANG ; Dan WU ; Si-Ying CHEN ; Yi CHEN ; Yue-Ting LI ; Lin ZHENG ; Yong HUANG ; Yan-Yu LAN ; Yong-Lin WANG ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2022;47(17):4755-4764
The present study investigated the pharmacodynamic material basis of Laportea bulbifera in the treatment of rheumatoid arthritis. Firstly, human rheumatoid arthritis fibroblast-like synoviocyte line MH7A was cultured in vitro and treated with tumor necrosis factor alpha(TNF-α, 50 ng·mL~(-1)). The proliferation and the levels of inflammatory cytokines such as prostaglandin E2(PGE2), interleukin-1β(IL-1β), and interleukin-6(IL-6) of the MH7A cells exposed to the serum containing L. bulbifera were determined to evaluate the anti-rheumatoid arthritis effects of the serum. Furthermore, the ultra-performance liquid chromatography tandem mass spectrometry fingerprints of the L. bulbifera crude extract, the drug-containing serum, and the drug-free serum were compared to identify the compounds newly generated in the serum after oral administration of the extract. According to the peak areas of common peaks and the results of anti-rheumatoid arthritis effect test, the active components were identified. The serum containing L. bulbifera significantly inhibited the proliferation of the MH7A cells activated by TNF-α and the expression of PGE2, IL-6, and IL-1β. Thirty newly generated compounds were detected in the drug-containing serum. Among them, neochlorogenic acid, cryptochlorogenic acid, chlorogenic acid, rutin, isoquercitrin, luteoloside, kaempferol-3-O-rutinoside, and quercitrin were also present in the crude extract. Twelve characteristic peaks(3, 7, 8, 14, 18, 19, 21, 23, 24, m6, m7, and m15) were significantly correlated with the pharmaceutical effect. According to the correlations, neochlorogenic acid, cryptochlorogenic acid, and chlorogenic acid had great contributions to the anti-rheumatoid arthritis activity. This study preliminarily clarified the potential pharmacodynamic substances of L. bulbifera in the treatment of rheumatoid arthritis, which laid a theoretical and experimental foundation for further development and application of the medicinal plant.
Animals
;
Arthritis, Experimental/drug therapy*
;
Arthritis, Rheumatoid/drug therapy*
;
Chlorogenic Acid/analogs & derivatives*
;
Cytokines/metabolism*
;
Dinoprostone
;
Humans
;
Interleukin-1beta/genetics*
;
Interleukin-6
;
Plant Extracts/therapeutic use*
;
Quinic Acid/analogs & derivatives*
;
Rutin
;
Tumor Necrosis Factor-alpha/metabolism*
;
Urticaceae/chemistry*

Result Analysis
Print
Save
E-mail