1.Lipid metabolism in health and disease: Mechanistic and therapeutic insights for Parkinson's disease.
Bingqing QIN ; Yuan FU ; Ana-Caroline RAULIN ; Shuangyu KONG ; Han LI ; Junyi LIU ; Chunfeng LIU ; Jing ZHAO
Chinese Medical Journal 2025;138(12):1411-1423
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons and the accumulation of Lewy bodies, leading to motor and nonmotor symptoms. While both genetic and environmental factors contribute to PD, recent studies highlight the crucial role of lipid metabolism disturbances in disease progression. Altered lipid homeostasis promotes protein aggregation and oxidative stress, with significant changes in lipid classes such as sphingolipids and glycerolipids observed in patients with PD. These disturbances are involved in key pathological processes, such as α-synuclein aggregation, organelle dysfunction, lipid-mediated neuroinflammation, and impaired lipid homeostasis. This review examines the relationship between lipid species and PD progression, focusing on the physiological roles of lipids in the central nervous system. It explores the mechanistic links between lipid metabolism and PD pathology, along with lipid-related genetic risk factors. Furthermore, this review discusses lipid-targeting therapeutic strategies to mitigate PD progression, emphasizing the potential of lipid modulation for effective treatment development.
Humans
;
Parkinson Disease/metabolism*
;
Lipid Metabolism/physiology*
;
Animals
;
Oxidative Stress/physiology*
;
alpha-Synuclein/metabolism*
2.Protein aggregation in neurodegenerative diseases.
Jiannan WANG ; Lijun DAI ; Zhentao ZHANG
Chinese Medical Journal 2025;138(21):2753-2768
Neurodegenerative diseases constitute a group of chronic disorders characterized by the progressive loss of neurons. Major neurodegenerative conditions include Alzheimer's disease, Parkinson's disease, Huntington's disease, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis. Pathologically, these diseases are marked by the accumulation of aggregates formed by pathological proteins such as amyloid-β, tau, α-synuclein, and TAR DNA-binding protein 43. These proteins assemble into amyloid fibrils that undergo prion-like propagation and dissemination, ultimately inducing neurodegeneration. Understanding the biology of these protein aggregates is fundamental to elucidating the pathophysiology of neurodegenerative disorders. In this review, we summarize the molecular mechanisms underlying the aggregation and transmission of pathological proteins, the processes through which these protein aggregates trigger neurodegeneration, and the interactions between different pathological proteins. We also provide an overview of the current diagnostic approaches and therapeutic strategies targeting pathological protein aggregates.
Humans
;
Neurodegenerative Diseases/metabolism*
;
alpha-Synuclein/metabolism*
;
Amyloid beta-Peptides/metabolism*
;
tau Proteins/metabolism*
;
Protein Aggregation, Pathological/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Animals
;
Protein Aggregates/physiology*
3.The role of microglia activated by the deletion of immune checkpoint receptor CD200R1 gene in a mouse model of Parkinson's disease.
Jia-Li GUO ; Tao-Ying HUANG ; Zhen ZHANG ; Kun NIU ; Xarbat GONGBIKAI ; Xiao-Li GONG ; Xiao-Min WANG ; Ting ZHANG
Acta Physiologica Sinica 2025;77(1):13-24
The study aimed to investigate the effect of the CD200R1 gene deletion on microglia activation and nigrostriatal dopamine neuron loss in the Parkinson's disease (PD) process. The CRISPR-Cas9 technology was applied to construct the CD200R1-/- mice. The primary microglia cells of wild-type and CD200R1-/- mice were cultured and treated with bacterial lipopolysaccharide (LPS). Microglia phagocytosis level was assessed by a fluorescent microsphere phagocytosis assay. PD mouse model was prepared by nigral stereotaxic injection of recombinant adeno-associated virus vector carrying human α-synuclein (α-syn). The changes in the motor behavior of the mice with both genotypes were evaluated by cylinder test, open field test, and rotarod test. Immunohistochemical staining was used to assess the loss of dopamine neurons in substantia nigra. Immunofluorescence staining was used to detect the expression level of CD68 (a key molecule involved in phagocytosis) in microglia. The results showed that CD200R1 deletion markedly enhanced LPS-induced phagocytosis in vitro by the microglial cells. In the mouse model of PD, CD200R1 deletion exacerbated motor behavior impairment and dopamine neuron loss in substantia nigra. Fluorescence intensity analysis results revealed a significant increase in CD68 expression in microglia located in the substantia nigra of CD200R1-/- mice. The above results suggest that CD200R1 deletion may further activates microglia by promoting microglial phagocytosis, leading to increased loss of the nigrostriatal dopamine neurons in the PD model mice. Therefore, targeting CD200R1 could potentially serve as a novel therapeutic target for the treatment of early-stage PD.
Animals
;
Microglia/physiology*
;
Mice
;
Phagocytosis
;
Parkinson Disease/genetics*
;
Disease Models, Animal
;
Receptors, Cell Surface/physiology*
;
Dopaminergic Neurons/pathology*
;
Antigens, CD/metabolism*
;
Gene Deletion
;
Substantia Nigra
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Cells, Cultured
;
Male
;
alpha-Synuclein
;
CD68 Molecule
;
Orexin Receptors
4.Piezo1 Mediates Ultrasound-Stimulated Dopaminergic Neuron Protection via Synaptic Vesicle Recycling and Ferroptosis Inhibition.
Tian XU ; Li ZHANG ; Xiaoxiao LU ; Wei JI ; Kaidong CHEN
Neuroscience Bulletin 2025;41(11):1924-1938
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the aggregation of α-synuclein (α-syn) and dysregulated synaptic vesicle (SV) recycling. Emerging evidence suggests that ferroptosis is the target of PD therapy. However, the identification of effective anti-ferroptosis treatments remains elusive. This study explores the therapeutic potential of low-intensity ultrasound (US) in modulating SV recycling and anti-ferroptosis in cellular and animal models of PD. We demonstrate that optimized US stimulation (610 kHz, 0.2 W/cm2) activates Piezo1 channel-mediated fast endophilin-mediated endocytosis, which promotes SV recycling and synaptic function, presenting with increased frequency and amplitude of both spontaneous excitatory synaptic currents and miniature excitatory postsynaptic currents. Repaired SV recycling in turn reduces the accumulation of α-syn expression and ferroptotic cell death. These findings support the potential of noninvasive ultrasonic neuromodulation as a therapeutic strategy for PD and lead to meaningful health outcomes for the aging population.
Animals
;
Ferroptosis/physiology*
;
Synaptic Vesicles/metabolism*
;
Dopaminergic Neurons/metabolism*
;
Ion Channels/metabolism*
;
Mice
;
Ultrasonic Waves
;
Humans
;
Male
;
Mice, Inbred C57BL
;
Endocytosis/physiology*
;
alpha-Synuclein/metabolism*
5.beta1-integrin-dependent migration of microglia in response to neuron-released alpha-synuclein.
Changyoun KIM ; Eun Deok CHO ; Hyung Koo KIM ; Sungyong YOU ; He Jin LEE ; Daehee HWANG ; Seung Jae LEE
Experimental & Molecular Medicine 2014;46(4):e91-
Chronic neuroinflammation is an integral pathological feature of major neurodegenerative diseases. The recruitment of microglia to affected brain regions and the activation of these cells are the major events leading to disease-associated neuroinflammation. In a previous study, we showed that neuron-released alpha-synuclein can activate microglia through activating the Toll-like receptor 2 (TLR2) pathway, resulting in proinflammatory responses. However, it is not clear whether other signaling pathways are involved in the migration and activation of microglia in response to neuron-released alpha-synuclein. In the current study, we demonstrated that TLR2 activation is not sufficient for all of the changes manifested by microglia in response to neuron-released alpha-synuclein. Specifically, the migration of and morphological changes in microglia, triggered by neuron-released alpha-synuclein, did not require the activation of TLR2, whereas increased proliferation and production of cytokines were strictly under the control of TLR2. Construction of a hypothetical signaling network using computational tools and experimental validation with various peptide inhibitors showed that beta1-integrin was necessary for both the morphological changes and the migration. However, neither proliferation nor cytokine production by microglia was dependent on the activation of beta1-integrin. These results suggest that beta1-integrin signaling is specifically responsible for the recruitment of microglia to the disease-affected brain regions, where neurons most likely release relatively high levels of alpha-synuclein.
Animals
;
Antigens, CD29/genetics/*metabolism
;
Cell Line, Tumor
;
*Cell Movement
;
Cells, Cultured
;
Culture Media, Conditioned/*pharmacology
;
Gene Regulatory Networks
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Microglia/drug effects/metabolism/*physiology
;
Neurons/*metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Toll-Like Receptor 2/metabolism
;
alpha-Synuclein/*pharmacology
6.Role of microglial activation induced by α-synuclein in pathogenesis of Parkinson's disease.
Sen QIAO ; Jian-hong LUO ; Jing-hua JIN
Journal of Zhejiang University. Medical sciences 2012;41(2):210-214
Parkinson's disease (PD), a progressive neurodegenerative disorder, is pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of deposits of aggregated α-synuclein in intracellular inclusions known as Lewy bodies (LB). A highly localized inflammatory response mediated by reactive microglia is prominent in PD brains, but the mechanisms underlying the microglial activation are poorly understood. Recently some lines of evidences have shown that monomeric, or aggregated α-synuclein can activate microglia, the toxic factors released from activated microglia may lead to the cell death of dopaminergic neurons. This review is to summarize the recent progress on the role of α-synuclein induced microglia activation on the PD pathogenesis and progression, and to discuss the possible mechanisms involved.
Humans
;
Microglia
;
pathology
;
Parkinson Disease
;
etiology
;
metabolism
;
pathology
;
alpha-Synuclein
;
chemistry
;
metabolism
;
physiology
7.Blockade of the aberrant aggregation of alpha-synuclein in HEK293 cells induced by overexpression of wild-type alpha-synuclein by RNA interference.
Tao CHEN ; Bei-sha TANG ; Xiao-ping LIAO
Chinese Journal of Medical Genetics 2008;25(2):128-131
OBJECTIVETo construct specific and effective RNA interference(RNAi) plasmid for alpha-synuclein gene and investigate RNAi blockade of the aberrant aggregation of alpha-synuclein in HEK293 cells induced by overexpression of wild-type alpha-synuclein.
METHODSHairpin RNAs for four target sites were designed to construct four RNAi plasmids pSYNi-1, pSYNi-2, pSYNi-3 and pSYNi-4, using plasmid pBSHH1 vector under the control of the H1 promoter. Western blot and reverse transcription-PCR(RT-PCR) were performed to screen the most specific and effective RNAi plasmid. After confirming the sequences of the plasmids, they were co-transfected into HEK293 cells with the recombinant plasmids alpha-synuclein-pEGFP by using lipofectamin 2000. The aberrant aggregation of alpha-synuclein was measured by EGFP fluorescence and immunocytochemistry for alpha-synuclein. The inclusions in the cultured cells were identified with HE staining.
RESULTSBy Western blot and RT-PCR, pSYNi-1 showed the most effective RNAi gene silencing effect (69.6%). After transfecting the RNAi plasmid, the aberrant aggregation of alpha-synuclein in HEK293 cells induced by overexpression of wild-type alpha-synuclein was inhibited. The Lewy body-like inclusions were found in cytoplasm of cultured cells in control group, but disappeared in HEK293 cells cotransfected by pSYNi-1 and alpha-synuclein-pEGFP plasmid.
CONCLUSIONRNAi can block the aberrant aggregation and Lewy body-like inclusion formation in cytoplasm of HEK293 cell induced by overexpression of wild-type alpha-synuclein.
Blotting, Western ; Cell Line ; Genetic Vectors ; genetics ; Humans ; Immunohistochemistry ; Plasmids ; genetics ; RNA Interference ; physiology ; Reverse Transcriptase Polymerase Chain Reaction ; Transfection ; alpha-Synuclein ; genetics ; metabolism
8.Overexpression of alpha-synuclein in SH-SY5Y cells partially protected against oxidative stress induced by rotenone.
Yan-Ying LIU ; Huan-Ying ZHAO ; Chun-Li ZHAO ; Chun-Li DUAN ; Ling-Ling LU ; Hui YANG
Acta Physiologica Sinica 2006;58(5):421-428
Both genetic and environmental factors are involved in the pathogenesis of Parkinsonos disease (PD). Epidemiological studies showed that environmental factors shared with the common mechanisms of resulting in alpha-synuclein aggregation by inhibiting complex I of mitochondria and leading to oxidative stress. To investigate the relationship between alpha-synuclein and oxidative stress, we used human dopaminergic SH-SY5Y cells transfected with alpha-synuclein-enhanced green fluorescent protein (EGFP). alpha-synuclein gene expression was determined by immunocytochemistry and real-time quantitative PCR. Both SH-SY5Y and alpha-synuclein overexpressed SH-SY5Y (SH-SY5Y/Syn) cells were treated with various concentrations of rotenone for different time. Cell viability and oxidative stress were detected by MTT assay and DCF assay. Superoxide dismutase (SOD) activity was assessed with xanthine peroxidase method. Cell apoptosis was detected with flow cytometry. Results showed that alpha-synuclein gene was constantly overexpressed in SH-SY5Y/Syn cells. After treatment with rotenone, both cell viability and complex I activity in these cells were reduced in a concentration-dependent manner. Oxidative stress was also found in these cells. Compared with SH-SY5Y cells, SOD activity in SH-SY5Y/Syn cells was increased distinctly (P<0.05) and alpha-synuclein significantly attenuated rotenone-induced cell apoptosis. These results suggest that the alpha-synuclein overexpression in SH-SY5Y cells has a tendency to partially resist oxidative stress induced by rotenone and this response may assist cell survival.
Apoptosis
;
drug effects
;
Cell Line
;
Cell Survival
;
drug effects
;
Cytoprotection
;
Dose-Response Relationship, Drug
;
Electron Transport Complex I
;
metabolism
;
Humans
;
Oxidative Stress
;
Rotenone
;
toxicity
;
Superoxide Dismutase
;
metabolism
;
Superoxides
;
metabolism
;
alpha-Synuclein
;
genetics
;
physiology
9.Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease.
Experimental & Molecular Medicine 2006;38(4):333-347
Inflammation, a self-defensive reaction against various pathogenic stimuli, may become harmful self-damaging process. Increasing evidence has linked chronic inflammation to a number of neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis. In the central nervous system, microglia, the resident innate immune cells play major role in the inflammatory process. Although they form the first line of defense for the neural parenchyma, uncontrolled activation of microglia may directly toxic to neurons by releasing various substances such as inflammatory cytokines (IL-1beta, TNF-alpha, IL-6), NO, PGE
alpha-Synuclein/physiology
;
Signal Transduction
;
Parkinson Disease/*etiology/immunology
;
Multiple Sclerosis/etiology
;
Models, Biological
;
Microglia/immunology/metabolism/*physiology
;
Metalloproteases/physiology
;
Melanins/physiology
;
Matrix Metalloproteinase 3
;
Inflammation Mediators/metabolism
;
Humans
;
Encephalitis/*etiology/immunology
;
Cytokines/secretion
;
Animals
;
Alzheimer Disease/etiology
;
AIDS Dementia Complex/etiology

Result Analysis
Print
Save
E-mail