1.Anti-hepatic fibrosis effect and mechanism of Albiziae Cortex-Tribuli Fructus based on Nrf2/NLRP3/caspase-1 pathway.
Meng-Yuan ZHENG ; Jing-Wen HUANG ; Si-Chen JIANG ; Ze-Yu XIE ; Yi-Xiao XU ; Li YAO
China Journal of Chinese Materia Medica 2025;50(15):4129-4140
This study aims to explore whether Albiziae Cortex-Tribuli Fructus can exert an anti-hepatic fibrosis effect by regulating the nuclear factor E2-related factor 2(Nrf2)/NOD-like receptor protein 3(NLRP3)/cysteine protease-1(caspase-1) pathway and analyze its potential mechanism. In the in vivo experiment, a mouse model of hepatic fibrosis was established by subcutaneous injection of carbon tetrachloride. The levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), collagen type Ⅳ(ColⅣ), laminin(LN), procollagen type Ⅲ(PCⅢ), and hyaluronic acid(HA) in the serum of mice were measured using a fully automated biochemical analyzer and ELISA. Hematoxylin and eosin(HE) and Masson staining were used to observe inflammation and collagen fiber deposition in the liver tissue. Western blot and RT-qPCR were employed to detect the protein and mRNA expression of collagen type Ⅰ(collagen Ⅰ), α-smooth muscle actin(α-SMA), Nrf2, NLRP3, gasdermin D(GSDMD), and caspase-1 in the hepatic tissue. In the in vitro experiment, human hepatic stellate cells(HSC-LX2) were pretreated with Nrf2 agonist or inhibitor, followed by the addition of blank serum, AngⅡ + blank serum, and AngⅡ + Albiziae Cortex-Tribuli Fructus-containing serum for intervention. Western blot was used to detect the protein expression of Nrf2, NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, and apoptosis-associated speck-like protein(ASC) in cells. DCFH-DA fluorescence probe was used to detect the cellular ROS levels. The results from the in vivo experiment showed that, compared with the model group, Albiziae Cortex-Tribuli Fructus significantly reduced the serum levels of AST, ALT, ColⅣ, LN, PCⅢ, and HA, reduced the infiltration of inflammatory cells and collagen fiber deposition in the liver tissue, significantly upregulated the protein and mRNA expression of Nrf2 in the liver tissue, and significantly downregulated the protein and mRNA expression of collagen I, α-SMA, NLRP3, GSDMD, and caspase-1 in the liver tissue. The results from the in vitro experiment showed that Nrf2 activation decreased the protein expression of NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, ASC, and ROS levels in HSC-LX2, while Nrf2 inhibition showed the opposite trend. Furthermore, Albiziae Cortex-Tribuli Fructus-containing serum directly decreased the expression of the above proteins and ROS levels. In conclusion, Albiziae Cortex-Tribuli Fructus can effectively improve hepatic fibrosis, and its mechanism of action may involve inhibiting pyroptosis through the regulation of the Nrf2/NLRP3/caspase-1 pathway.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Liver Cirrhosis/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 1/genetics*
;
Male
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Plant Extracts
;
Tribulus
2.Structurally novel tryptamine-derived alkaloids from the seeds of Peganum harmala and their antiviral activities against respiratory syncytial virus.
Zhongnan WU ; Yubo ZHANG ; Guocai WANG ; Qing TANG ; Yaolan LI ; Xiaoqing XIE ; Yushen LIANG ; Wen CHENG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):972-979
Peganum harmala L. (P. harmala) is a significant economic and medicinal plant. The seeds of P. harmala have been extensively utilized in traditional Chinese medicine, Uighur medicine, and Mongolian medicine, as documented in the Drug Standard of the Ministry of Health of China. Twelve novel tryptamine-derived alkaloids (1-12) and eight known compounds (13-20) were isolated from P. harmala seeds. Compounds 1 and 2 represent the first reported instances of tryptamine-derived heteromers, comprising tryptamine and aniline fragments with previously undocumented C-3-N-1' linkage and C-3-C-4' connection, respectively. Compounds 3-5 were identified as indole-quinazoline heteromers, exhibiting a novel C-3 and NH-1' linkage between indole and quinazoline-derived fragments. Compound 6 demonstrates the dimerization pattern of C-C linked tryptamine-quinazoline dimer. Compound 8 represents a tryptamine-derived heterodimer with a distinctive carbon skeleton, featuring an unusual spiro-tricyclic ring (7) and conventional bicyclic tryptamine. Compounds 9-11 constitute novel 6/5/5/5 spiro-tetracyclic tryptamine-derived alkaloids presenting a unique ring system of tryptamine-spiro-pyrrolizine. Compounds 1-3 and 6-11 were identified as racemates. Compounds 2, 7, 9, 10, and 12 were confirmed via X-ray crystallographic analysis. All isolated compounds (1-20) exhibited varying degrees of antiviral efficacy against respiratory syncytial virus (RSV). Notably, the anti-RSV activity of compound 12 (IC50 5.01 ± 0.14 μmol·L-1) surpassed that of the positive control (ribavirin, IC50 6.23 ± 0.95 μmol·L-1), as validated through plaque reduction and immunofluorescence assays. The identification of anti-RSV compounds from P. harmala seeds may enhance the development and application of this plant in antiviral therapeutic products.
Antiviral Agents/isolation & purification*
;
Tryptamines/isolation & purification*
;
Peganum/chemistry*
;
Seeds/chemistry*
;
Alkaloids/isolation & purification*
;
Molecular Structure
;
Humans
;
Respiratory Syncytial Viruses/drug effects*
;
Plant Extracts/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
3.Antiglycation and antioxidant activities of the crude extract and saponin fraction of Tribulus terrestris before and after microcapsule release.
Célia Cristina Malaguti FIGUEIREDO ; Amanda DA COSTA GOMES ; Filipe Oliveira GRANERO ; João Luiz BRONZEL JUNIOR ; Luciana Pereira SILVA ; Valdecir Farias XIMENES ; Regildo Márcio Gonçalves DA SILVA
Journal of Integrative Medicine 2022;20(2):153-162
OBJECTIVE:
The present study investigated antiglycation and antioxidant activities of crude dry extract and saponin fraction of Tribulus terrestris. It also developed a method of microencapsulation and evaluated antiglycation and antioxidant activities of crude dry extract and saponin fraction before and after microcapsule release.
METHODS:
Antiglycation activity was determined by relative electrophoretic mobility (REM), free amino groups and inhibition of advanced glycation end-product (AGE) formation. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric ion-reducing antioxidant power (FRAP), nitric oxide (NO) and thiobarbituric acid reactive species (TBARS) tests. Microcapsules were prepared using maltodextrin as wall material and freeze-drying as encapsulation technique. Morphological characterization of microcapsules was evaluated by scanning electron microscopy, and encapsulation efficiency and microcapsule release were determined by total saponins released. Antiglycation and antioxidant assays were performed using crude dry extract and saponin fraction of T. terrestris before and after release.
RESULTS:
Saponin fraction showed an increase of 32.8% total saponins. High-performance liquid chromatography-mass spectrometry analysis showed the presence of saponins in the obtained fraction. Antiglycation evaluation by REM demonstrated that samples before and after release presented antiglycation activity similar to bovine serum albumin treated with aminoguanidine. Additionally, samples inhibited AGE formation, highlighting treatment with saponin fraction after release (89.89%). Antioxidant tests demonstrated antioxidant activity of the samples. Crude dry extract before encapsulation presented the highest activities in DPPH (92.00%) and TBARS (32.49%) assays. Saponin fraction before encapsulation in FRAP test (499 μmol Trolox equivalent per gram of dry sample) and NO test (15.13 μmol nitrite formed per gram of extract) presented the highest activities.
CONCLUSION
This study presented antiglycation activity of crude dry extract and saponin fraction of T. terrestris, besides it demonstrated promising antioxidant properties. It also showed that the encapsulation method was efficient and maintained biological activity of bioactive compounds after microcapsule release. These results provide information for further studies on antidiabetic and antiaging potential, and data for new herbal medicine and food supplement formulations containing microcapsules with crude extract and/or saponin fraction of T. terrestris.
Antioxidants/chemistry*
;
Capsules
;
Complex Mixtures
;
Glycation End Products, Advanced
;
Plant Extracts/pharmacology*
;
Saponins/pharmacology*
;
Thiobarbituric Acid Reactive Substances
;
Tribulus
4.Study on transformation rules of terrestrosin D in course of Tribuli Fructus stir-frying based on simulated processing technology.
Rui YUAN ; Tong SU ; Chao ZHANG ; Xiao SONG ; Yao-Hui YUAN ; Rui-Teng LI ; Yi-Jing LIU
China Journal of Chinese Materia Medica 2019;44(14):3049-3054
The contents of terrestrosin D and hecogenin from Tribuli Fructus were determined before and after stir-frying. The results showed that the content of terrestrosin D was decreased significantly,and the content of hecogenin was increased significantly after such processing. In order to verify the inference that terrestrosin D was converted to hecogenin by stir-frying,the quantitative variation rules of terrestrosin D and hecogenin were studied by simulated processing technology,and the simulated processing product of terrestrosin D was qualitatively characterized by ultra performance liquid chromatography/time of flight mass spectrometry( UPLC-TOF/MS) to clarify its transformation process during stir-frying. The results showed that the content of terrestrosin D was decreased significantly at first and then a platform stage appeared with the prolongation of processing time at a certain temperature. Raising the stir-frying temperature could further decrease the content of terrestrosin D and delay the time that the platform stage appeared. When the processing was simulated at higher temperatures( 220 ℃ and 240 ℃),the content of hecogenin was increased gradually with the increase of processing temperature and the prolongation of processing time. In the process of stir-frying,the deglycosylation reaction of terrestrosin D to hecogenin was not completed in one step. The deglycosylation reaction occurred first at the end of the sugar chain,and then other glycosyl units in the sugar chain were sequentially removed from the outside to the inside to finally form the hecogenin. This study provides a basis for further revealing the detoxification mechanism of stir-fried Tribuli Fructus.
Chromatography, Liquid
;
Fruit
;
chemistry
;
Hot Temperature
;
Phytochemicals
;
analysis
;
Sapogenins
;
analysis
;
Tandem Mass Spectrometry
;
Zygophyllaceae
;
chemistry
5.Changes and mechanisms of terrestroside B and terrestrosin K in stir-frying Tribuli Fructus.
Rui YUAN ; Li-Li WANG ; Long-Fei ZHANG ; Chao ZHANG ; Yao-Hui YUAN ; Xiao SONG ; Bai-Ping MA
China Journal of Chinese Materia Medica 2019;44(15):3297-3304
The contents of terrestroside B and terrestrosin K in Tribuli Fructus with different degree of stir-frying were determined by high performance liquid chromatography with evaporative light-scattering detector( HPLC-ELSD). The results showed that the contents of terrestroside B and terrestrosin K were increased at first and then decreased,and both of them had the highest content at the best time of heating. The results of simulated processing of Tribulus Terrestris saponins showed that when the processing time kept constant,the contents of terrestroside B and terrestrosin K were decreased gradually with the increase of processing temperature from 180 ℃ to240 ℃. At a certain temperature,the content of terrestrosin K was increased first and then decreased with the prolongation of processing time,and reached the highest level at 5 min. However,the content of terrestroside B was increased first and then decreased with the increase of processing time only at 180 ℃,and reached the highest level at 10 min. When the processing temperature was controlled at200,220 and 240 ℃ respectively,the content of terrestroside B was decreased gradually with the increase of processing time. The simulated processing products of tribuluside A,terrestroside B and terrestrosin K were qualitatively characterized by ultra-performance liquid chromatography-time of flight mass spectrometry( UPLC-TOF/MS). It was proved that tribuluside A and terrestrosin Ⅰ containing C-22-OH were dehydroxylated in the processing of Tribuli Fructus and transformed respectively into terrestroside B and terrestrosin K containing C-20-C-22 double bond. As a result,the contents of terrestroside B and terrestrosin K were increased. The sugar chains at C-3 and C-26 positions of terrestroside B and terrestrosin K could be deglycosylated and converted into monosaccharide chain saponins and short sugar chain saponins,so the contents of terrestroside B and terrestrosin K were reduced. The study provides reference for further revealing the processing principle of Tribuli Fructus.
Chemistry, Pharmaceutical
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
analysis
;
Fruit
;
chemistry
;
Saponins
;
analysis
;
Tandem Mass Spectrometry
;
Tribulus
;
chemistry
6.N-containing compounds from seeds of Paganum harmala.
Xin FANG ; Hai-Yang YU ; Li-Feng HAN ; Xu PANG
China Journal of Chinese Materia Medica 2019;44(8):1601-1606
To investigate the N-containing compounds in the seeds of Paganum harmala,fourteen compounds were finally isolated from the 95% Et OH extract of P. harmala seeds by using various chromatographic techniques including silica gel,MCI resin,and ODS column chromatography as well as the semi-preparative HPLC. Depending on spectroscopic techniques and comparison with the reported data in the literatures,the structures of all compounds were identified as N-[3-(2-amino-4-methoxyphenyl)-3-oxopropyl]acetamide(1),dehydroharmalacidine(2),harmalacidine(3),harmine N-oxide(4),harmine(5),tetrahydroharmine(6),demethylharmalacidine(7),harmol(8),tetrahydroharmol(9),harmindol β-D-glucopyranoside(10),tryptophyl β-D-glucopyranoside(11),pegamineβ-D-glucopyranoside(12),vasicol(13) and vasicinone(14). Among them,1 was a new compound,and 2 and 10 were obtained as natural products for the first time.
Chromatography, High Pressure Liquid
;
Nitrogen
;
analysis
;
Peganum
;
chemistry
;
Phytochemicals
;
analysis
;
Plant Extracts
;
chemistry
;
Seeds
;
chemistry
7.Anti-coccidial activity of the ethanol extract of Tribulus terrestris fruits on Eimeria tenella.
Sunhwa HONG ; Mi Na MOON ; Eun Kyung IM ; Jum Soon WON ; Ji Hyun YOO ; Okjin KIM
Laboratory Animal Research 2018;34(1):44-47
Anti-coccidial effects of the fruits of Tribulus terrestris (Tribuli fructus) ethanol extract (TTE) were studied with animal experiment following per oral administration with Eimeria (E.) tenella. This experiment was performed on the 3-day-old chicks (n=30). The animals were divided with 3 groups; TFE 15mg per animal+infected (n=10), TTE untreated+infected (n=10) and non-infected control (n=10). Animals were administrated with or without TTE during 1 week, and then inoculated with E. tenella. The anti-coccidial activity were evaluated with oocysts shedding numbers in stools, body weights changes and food intake changes. The TTE-inoclated animals revealed significantly decreased stool oocysts numbers (P < 0.05) when compared to the TTE untreated animals. Also, TTE-treated animals showed more increased body weight gains (P < 0.05) than the TTE untreated animals. These results demonstrate that TTE produce anticoccidial activities against E. tenella. TTE could be a promising treatment for the coccidiosis.
Administration, Oral
;
Animal Experimentation
;
Animals
;
Body Weight
;
Coccidiosis
;
Eating
;
Eimeria tenella*
;
Eimeria*
;
Ethanol*
;
Fruit*
;
Oocysts
;
Polytetrafluoroethylene
;
Tribulus*
8.Vascular protective effects of aqueous extracts of Tribulus terrestris on hypertensive endothelial injury.
Yue-Hua JIANG ; Jin-Hao GUO ; Sai WU ; Chuan-Hua YANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(8):606-614
Angiotensin II (Ang II) is involved in endothelium injury during the development of hypertension. Tribulus terrestris (TT) is used to treat hypertension, arteriosclerosis, and post-stroke syndrome in China. The present study aimed to determine the effects of aqueous TT extracts on endothelial injury in spontaneously hypertensive rats (SHRs) and its protective effects against Ang II-induced injury in human umbilical vein endothelial cells (HUVECs). SHRs were administered intragastrically with TT (17.2 or 8.6 g·kg·d) for 6 weeks, using valsartan (13.5 mg·kg·d) as positive control. Blood pressure, heart rate, endothelial morphology of the thoracic aorta, serum levels of Ang II, endothelin-1 (ET-1), superoxide dismutase (SOD) and malonaldehyde (MDA) were measured. The endothelial injury of HUVECs was induced by 2 × 10 mol·L Ang II. Cell Apoptosisapoptosis, intracellular reactive oxygen species (ROS) was assessed. Endothelial nitric oxide synthase (eNOS), ET-1, SOD, and MDA in the cell culture supernatant and cell migration were assayed. The expression of hypertension-linked genes and proteins were analyzed. TT decreased systolic pressure, diastolic pressure, mean arterial pressure and heart rate, improved endothelial integrity of thoracic aorta, and decreased serum leptin, Ang II, ET-1, NPY, and Hcy, while increased NO in SHRs. TT suppressed Ang II-induced HUVEC proliferation and apoptosis and prolonged the survival, and increased cell migration. TT regulated the ROS, and decreased mRNA expression of Akt1, JAK2, PI3Kα, Erk2, FAK, and NF-κB p65 and protein expression of Erk2, FAK, and NF-κB p65. In conclusion, TT demonstrated anti-hypertensive and endothelial protective effects by regulating Erk2, FAK and NF-κB p65.
Angiotensin II
;
metabolism
;
Animals
;
Antihypertensive Agents
;
administration & dosage
;
Apoptosis
;
drug effects
;
Blood Pressure
;
drug effects
;
Endothelium, Vascular
;
drug effects
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
drug effects
;
Humans
;
Hypertension
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Male
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
Oxidative Stress
;
drug effects
;
Plant Extracts
;
administration & dosage
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
Rats
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Reactive Oxygen Species
;
metabolism
;
Tribulus
;
chemistry
9.Aqueous extracts of Tribulus terrestris protects against oxidized low-density lipoprotein-induced endothelial dysfunction.
Yue-hua JIANG ; Chuan-hua YANG ; Wei LI ; Sai WU ; Xian-qing MENG ; Dong-na LI
Chinese journal of integrative medicine 2016;22(3):193-200
OBJECTIVETo investigate the role of aqueous extracts of Tribulus terrestris (TT) against oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) dysfunction in vitro.
METHODSHUVECs were pre-incubated for 60 min with TT (30 and 3 μg/mL respectively) or 10(-5) mol/L valsartan (as positive controls) and then the injured endothelium model was established by applying 100 μg/mL ox-LDL for 24 h. Cell viability of HUVECs was observed by real-time cell electronic sensing assay and apoptosis rate by Annexin V/PI staining. The cell migration assay was performed with a transwell insert system. Cytoskeleton remodeling was observed by immunofluorescence assay. The content of endothelial nitric oxide synthase (eNOS) was measured by enzyme-linked immunosorbent assay. Intracellular reactive oxygen species (ROS) generation was assessed by immunofluorescence and flow cytometer. Key genes associated with the metabolism of ox-LDL were chosen for quantitative real-time polymerase chain reaction to explore the possible mechanism of TT against oxidized LDL-induced endothelial dysfunction.
RESULTSTT suppressed ox-LDL-induced HUVEC proliferation and apoptosis rates significantly (41.1% and 43.5% after treatment for 3 and 38 h, respectively; P<0.05). It also prolonged the HUVEC survival time and postponed the cell's decaying stage (from the 69th h to over 100 h). According to the immunofluorescence and transwell insert system assay, TT improved the endothelial cytoskeletal network, and vinculin expression and increased cell migration. Additionally, TT regulated of the synthesis of endothelial nitric oxide synthase and generation of intracellular reactive oxygen species (P<0.05). Both 30 and 3 μg/mL TT demonstrated similar efficacy to valsartan. TT normalized the increased mRNA expression of PI3Kα and Socs3. It also decreased mRNA expression of Akt1, AMPKα1, JAK2, LepR and STAT3 induced by ox-LDL. The most notable changes were JAK2, LepR, PI3Kα, Socs3 and STAT3.
CONCLUSIONSTT demonstrated potential lowering lipid benefits, anti-hypertension and endothelial protective effects. It also suggested that the JAK2/STAT3 and/or PI3K/AKT pathway might be a very important pathway which was involved in the pharmacological mechanism of TT as the vascular protective agent.
Apoptosis ; drug effects ; Cell Movement ; drug effects ; Cell Survival ; drug effects ; Cytoskeleton ; drug effects ; metabolism ; Endothelium, Vascular ; drug effects ; pathology ; physiopathology ; Enzyme-Linked Immunosorbent Assay ; Fluorescent Antibody Technique ; Gene Expression Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; drug effects ; Humans ; Lipoproteins, LDL ; adverse effects ; Nitric Oxide Synthase Type III ; metabolism ; Plant Extracts ; pharmacology ; Protective Agents ; pharmacology ; Reactive Oxygen Species ; metabolism ; Tribulus ; chemistry ; Vinculin ; metabolism ; Water ; chemistry
10.Studies on terpenoids from Zygophyllum fabago.
Jiang-ho HE ; Yan-fen NIU ; Jin-xian LI ; Lin-bo WANG ; Tai-ping ZI ; Shan YU ; Jian TAO
China Journal of Chinese Materia Medica 2015;40(23):4634-4638
This study was to investigate the chemical constituents of the aerial part of Zygophyllumfabago, by phytochemical methods. The compounds were isolated by silica gel and Sephadex LH-20 column chromatographies from the EtOAc extract. Their structures were characterized by various spectroscopic data (1H-NMR, 13C-NMR, MS) and comparison with the literature. As a result, thirteen compounds were isolated and their structures were identified as 1-hydroxyhinesol(1), hinesol(2), atractylenolactam(3), beta-eudesmol (4), 5alpha-hydroperoxy-beta-eudesmol(5), 12-hydroxy-valenc-1(10)-en-2-one(6), pubinernoid A(7), (6S,7E)-6-hydroxy-4,7-megastigmadien-3,9-dione(8), 3-hydroxy-5alpha, 6alpha-epoxy-beta-ionone (9), (3S,5R, 6S, 7E)-3, 5, 6-trihydroxy-7-megastigmen-9-one(10), (6R,7E,9R)-9-hydroxy-4,7-megastigmadien-3-one(11), (S)-3-hydroxy-beta-ionone(12), and blumenol A(13). Compounds 1-7 were sesquiterpenoids and 8-13 were megastigmane type norsesquiterpenoids. All the compounds were obtained from Z. fabago for the first time, and compound 1 was a new natural product.
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
Molecular Structure
;
Spectrometry, Mass, Electrospray Ionization
;
Terpenes
;
chemistry
;
isolation & purification
;
Zygophyllum
;
chemistry

Result Analysis
Print
Save
E-mail