1.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
2.Exploring the causal relationship between leukocyte telomere length and prostatitis, orchitis, and epididymitis based on a two-sample Mendelian randomization.
Dan-Yang LI ; Shun YU ; Bo-Hui YANG ; Jun-Bao ZHANG ; Guo-Chen YIN ; Lin-Na WU ; Qin-Zuo DONG ; Jin-Long XU ; Shu-Ping NING ; Rong ZHAO
National Journal of Andrology 2025;31(4):306-312
OBJECTIVE:
To investigate the genetic causal relationship of leukocyte telomere length (LTL) with prostatitis, orchitis and epididymitis by two-sample Mendelian randomization (MR).
METHODS:
Using LTL as the exposure factor and prostatitis, orchitis and epididymitis as outcome factors, we mined the Database of Genome-Wide Association Studies (GWAS). Then, we analyzed the causal relationship of LTL with prostatitis, orchitis and epididymitis by Mendelian randomization using inverse variance weighting (IVW) as the main method and weighted median and MR-Egger regression as auxiliary methods, determined the horizontal multiplicity by MR-Egger intercept test, and conducted sensitivity analysis using the leaving-one-out method.
RESULTS:
A total of 121 related single nucleotide polymorphisms (SNPs) were identified in this study. IVW showed LTL to be a risk factor for prostatitis (OR = 1.383, 95% CI: 1.044-1.832, P = 0.024), and for orchitis and epididymitis as well (OR = 1.770, 95% CI: 1.275-2.456, P = 0.000 6).
CONCLUSION
Genetic evidence from Mendelian randomized analysis indicates that shortening of LTL reduces the risk of prostatitis, orchitis and epididymitis.
Humans
;
Male
;
Mendelian Randomization Analysis
;
Epididymitis/genetics*
;
Prostatitis/genetics*
;
Polymorphism, Single Nucleotide
;
Leukocytes
;
Orchitis/genetics*
;
Genome-Wide Association Study
;
Telomere
;
Risk Factors
3.Expert consensus on prognostic evaluation of cochlear implantation in hereditary hearing loss.
Xinyu SHI ; Xianbao CAO ; Renjie CHAI ; Suijun CHEN ; Juan FENG ; Ningyu FENG ; Xia GAO ; Lulu GUO ; Yuhe LIU ; Ling LU ; Lingyun MEI ; Xiaoyun QIAN ; Dongdong REN ; Haibo SHI ; Duoduo TAO ; Qin WANG ; Zhaoyan WANG ; Shuo WANG ; Wei WANG ; Ming XIA ; Hao XIONG ; Baicheng XU ; Kai XU ; Lei XU ; Hua YANG ; Jun YANG ; Pingli YANG ; Wei YUAN ; Dingjun ZHA ; Chunming ZHANG ; Hongzheng ZHANG ; Juan ZHANG ; Tianhong ZHANG ; Wenqi ZUO ; Wenyan LI ; Yongyi YUAN ; Jie ZHANG ; Yu ZHAO ; Fang ZHENG ; Yu SUN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(9):798-808
Hearing loss is the most prevalent disabling disease. Cochlear implantation(CI) serves as the primary intervention for severe to profound hearing loss. This consensus systematically explores the value of genetic diagnosis in the pre-operative assessment and efficacy prognosis for CI. Drawing upon domestic and international research and clinical experience, it proposes an evidence-based medicine three-tiered prognostic classification system(Favorable, Marginal, Poor). The consensus focuses on common hereditary non-syndromic hearing loss(such as that caused by mutations in genes like GJB2, SLC26A4, OTOF, LOXHD1) and syndromic hereditary hearing loss(such as Jervell & Lange-Nielsen syndrome and Waardenburg syndrome), which are closely associated with congenital hearing loss, analyzing the impact of their pathological mechanisms on CI outcomes. The consensus provides recommendations based on multiple round of expert discussion and voting. It emphasizes that genetic diagnosis can optimize patient selection, predict prognosis, guide post-operative rehabilitation, offer stratified management strategies for patients with different genotypes, and advance the application of precision medicine in the field of CI.
Humans
;
Cochlear Implantation
;
Prognosis
;
Hearing Loss/surgery*
;
Consensus
;
Connexin 26
;
Mutation
;
Sulfate Transporters
;
Connexins/genetics*
4.Safety of modified T-piece resuscitator versus nasal cannula oxygen in electronic bronchoscopy for infants:a prospective randomized controlled study
Jun-Jie NING ; Zhi-Hui ZUO ; Zhi-Dong YU ; Xue-Mei LI ; Li-Na QIAO
Chinese Journal of Contemporary Pediatrics 2024;26(1):37-41
Objective To optimize the oxygen therapy regimens for infants with pulmonary diseases during bronchoscopy.Methods A prospective randomized,controlled,and single-center clinical trial was conducted on 42 infants who underwent electronic bronchoscopy from July 2019 to July 2021.These infants were divided into a nasal cannula(NC)group and a modified T-piece resuscitator(TPR)group using a random number table.The lowest intraoperative blood oxygen saturation was recorded as the primary outcome,and intraoperative heart rate and respiratory results were recorded as the secondary outcomes.Results Compared with the NC group,the modified TPR group had a significantly higher level of minimum oxygen saturation during surgery and a significantly lower incidence rate of hypoxemia(P<0.05).In the modified TPR group,there were 6 infants with mild hypoxemia,2 with moderate hypoxemia,and 1 with severe hypoxemia,while in the NC group,there were 3 infants with mild hypoxemia,5 with moderate hypoxemia,and 9 with severe hypoxemia(P<0.05).The modified TPR group had a significantly lower incidence rate of intraoperative respiratory rhythm abnormalities than the NC group(P<0.05),but there was no significant difference in the incidence rate of arrhythmias between the two groups(P>0.05).Conclusions Modified TPR can significantly reduce the risk of hypoxemia in infants with pulmonary diseases during electronic bronchoscopy,and TPR significantly decreases the severity of hypoxemia and the incidence of respiratory rhythm abnormalities compared with traditional NC.
5.Study on the Mechanism of Quercetin Intervention in Breast Cancer with Depressive Characteristics Based on Network Pharmacology and Animal Experiments
Ying-Chao WU ; Yu-Qi LIANG ; Yu-Yu HU ; Liu-Shan CHEN ; Peng WU ; Qian ZUO ; Qian-Jun CHEN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2795-2803
Objective To explore the mechanism of quercetin in the treatment of breast cancer with depressive features using network pharmacology and animal experiments.Methods Network pharmacology and bioinformatics methods were used to predict the key targets and mechanisms of quercetin in the treatment of breast cancer with depressive characteristics.The predicted results were verified by animal experiments.A mouse model of breast cancer with depressive characteristics was constructed,and quercetin intervention was performed after grouping.The depression of mice was evaluated by open field test.The tumor volume and tumor mass were measured.The expression of Ki-67 in tumor tissue was detected by immunohistochemical staining.The expressions of tumor necrosis factor α(TNF-α),interleukin 6(IL-6),p53,Caspase-3 and B-cell lymphoma/leukemia 2(Bcl-2)in tumor tissue were detected by Western Blot.Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)method was used to detect the apoptosis of tumor cells.Results In the breast cancer model group with depressive characteristics,the total movement distance in the open field test and the ratio of residence time in the central area of the open field test were decreased,the tumor volume and tumor mass were significantly increased,and Ki-67 expression level in the tumor tissue was significantly increased,the expression levels of TNF-α,IL-6,p53 and Caspase-3 in the tumor tissue were decreased and the expression level of Bcl-2 was increased,as well as the rate of TUNEL positive cells was decreased,the differences being statistically significant compared with the control group(P<0.01 or P<0.001).Compared with the model group,the above indexes were significantly reversed in the quercetin group(P<0.01 or P<0.001).Conclusion Quercetin can effectively inhibit the progression of breast cancer with depressive characteristics in mice,and its mechanism is related to the regulation of TNF,IL6,TP53,CASP3,BCL2 and other targets to promote tumor cell apoptosis.
6.Evaluation and optimization of metagenomic sequencing platforms for bloodstream infection samples
Xin PENG ; Hang FAN ; Meng-Nan CUI ; Lei LIN ; Guang-Qian PEI ; Yun-Fei WANG ; Xiu-Juan ZUO ; Xiao-Feng FANG ; Yan GUO ; Yu-Jun CUI
Chinese Journal of Zoonoses 2024;40(10):928-934
This study was aimed at comparing performance differences among three metagenomic sequencing platforms,MGISEQ-2000,Illumina NextSeq 2000,and Ion GeneStudio S5 Plus,to optimize the sequencing process for trace samples.The three sequencing platforms were used to perform high-throughput sequencing on DNA standards and simulated samples.Through analysis of the quality of raw data and microbial detection capabilities,systematic differences among platforms were compared.The sequencing results were optimized for trace samples by incorporation of exogenous nucleic acids during the li-brary preparation process.In terms of data output per batch and base quality,MGISEQ-2000 surpassed the other two plat-forms.Illumina NextSeq 2000 had the lowest proportion of duplicate reads,whereas Ion GeneStudio S5 Plus had the highest proportion,and significant differences were observed across platforms(P<0.001).In sequencing uniformity,MGISEQ-2000 and Illumina NextSeq 2000 were superior to Ion GeneStudio S5 Plus.MGISEQ-2000 provided a substantial advantage in microbial detection capability(P<0.001),but the advantage diminished with decreasing bacterial fluid concentration.Ion GeneStudio S5 Plus had the shortest duration for single-batch sequencing.Moreo-ver,for trace samples with DNA content ≤0.05 ng,the experi-mental group(with added exogenous nucleic acids)achieved a higher number of reads than the control group(without exogenous nucleic acids),with a 11.09±8.03 fold increase.In conclu-sion,the different sequencing platforms each had advantages and disadvantages,thus allowing researchers to choose the appro-priate platform according to specific needs.Furthermore,the addition of exogenous nucleic acids improved the microorganism detection efficiency,and provided better support for subsequent diagnosis and evaluation of results.
8.A case of dilated cardiomyopathy caused by FHL2 gene variant and a literature review.
Chunrui YU ; Lijuan JIA ; Chanjuan HAO ; Bianjing ZUO ; Wei LI ; Fangjie WANG ; Jun GUO
Chinese Journal of Medical Genetics 2023;40(3):337-343
OBJECTIVE:
To explore the clinical phenotype and genetic features of a child with dilated cardiomyopathy (DCM).
METHODS:
Clinical data of the child who had presented at the Zhengzhou Children's Hospital on April 28, 2020 was collected. Trio-whole exome sequencing (trio-WES) was carried out for the child and her parents, and candidate variants were validated by Sanger sequencing. "FHL2" was taken as the key word to retrieve related literature from January 1, 1997 to October 31, 2021 in the PubMed database and was also searched in the ClinVar database as a supplement to analyze the correlation between genetic variants and clinical features.
RESULTS:
The patient was a 5-month-old female infant presented with left ventricular enlargement and reduced systolic function. A heterozygous missense variant c.391C>T (p.Arg131Cys) in FHL2 gene was identified through trio-WES. The same variant was not detected in either of her parents. A total of 10 patients with FHL2 gene variants have been reported in the literature, 6 of them had presented with DCM, 2 with hypertrophic cardiomyopathy (HCM), and 2 with sudden unexplained death (SUD). Phenotypic analysis revealed that patients with variants in the LIM 3 domain presented hypertrophic cardiomyopathy and those with variants of the LIM 0~2 and LIM 4 domains had mainly presented DCM. The c.391C>T (p.Arg131Cys) has been identified in a child with DCM, though it has not been validated among the patient's family members. Based on the guidelines of the American College of Medical Genetics and Genomics, the c.391C>T(p.Arg131Cys) variant was re-classified as likely pathogenic (PS2+PM2_Supporting+PP3+PP5).
CONCLUSION
The heterozygous missense variant of c.391C>T (p.Arg131Cys) in the FHL2 gene probably predisposed to the DCM in this child, which has highlighted the importance of WES in the clinical diagnosis and genetic counseling.
Female
;
Humans
;
Cardiomyopathy, Dilated/genetics*
;
Cardiomyopathy, Hypertrophic
;
Genetic Counseling
;
Genomics
;
Heterozygote
;
Muscle Proteins/genetics*
;
Transcription Factors
;
LIM-Homeodomain Proteins/genetics*
9.Research advances on the role and mechanism of microRNA in hypertrophic scar.
Wen Rong TIAN ; Jun ZUO ; Jiang AI ; Yu Song QI ; Pan Pan BU ; Jiao Jun ZHAO ; Yang YU ; Shao Lin MA
Chinese Journal of Burns 2023;39(2):196-200
Hypertrophic scar (HS) affects the function and beauty of patients, and brings a heavy psychological burden to patients. However, the specific pathogenesis mechanism of HS in molecular biology level is not yet clear, and this disease is still one of the clinical diseases difficult to prevent and cure. MicroRNA (miR) is a family of single-stranded endogenous noncoding RNAs that can regulate gene expression. The abnormal transcription of miR in hypertrophic scar fibroblasts can affect the transduction and expression of downstream signal pathway or protein, and the exploration of miR and its downstream signal pathway and protein helps deeply understand the occurrence and development mechanism of scar hyperplasia. This article summarized and analyzed how miR and multiple signal pathways involve in the formation and development of HS in recent years, and further outlined the interaction between miR and target genes in HS.
Humans
;
MicroRNAs/genetics*
;
Cicatrix, Hypertrophic/genetics*
;
Fibroblasts
;
Hyperplasia
10.A hnRNPA2B1 agonist effectively inhibits HBV and SARS-CoV-2 omicron in vivo.
Daming ZUO ; Yu CHEN ; Jian-Piao CAI ; Hao-Yang YUAN ; Jun-Qi WU ; Yue YIN ; Jing-Wen XIE ; Jing-Min LIN ; Jia LUO ; Yang FENG ; Long-Jiao GE ; Jia ZHOU ; Ronald J QUINN ; San-Jun ZHAO ; Xing TONG ; Dong-Yan JIN ; Shuofeng YUAN ; Shao-Xing DAI ; Min XU
Protein & Cell 2023;14(1):37-50
The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.
Animals
;
Mice
;
Antiviral Agents/pharmacology*
;
COVID-19
;
Hepatitis B virus
;
Interferon Type I/metabolism*
;
SARS-CoV-2/drug effects*
;
Heterogeneous-Nuclear Ribonucleoprotein Group A-B/antagonists & inhibitors*

Result Analysis
Print
Save
E-mail