1.Practical exploration of ethical review in decentralized drug clinical trials
Xu ZUO ; Yingshuo HUANG ; Yue LI ; Lihan XING ; Chunxiu YANG ; Yan CUI
Chinese Medical Ethics 2025;38(1):40-45
ObjectiveTo explore the process and guidelines for ethical review in decentralized drug clinical trials, promote clinical trial progress, and ensure drug development progress. MethodsThe key points of the ethical review were summarized by studying the relevant laws and regulations on decentralized drug clinical trials, analyzing the advantages and challenges of decentralized drug clinical trials, and combining the experience of the ethics committee of the institution in reviewing decentralized drug clinical trials. ResultsRelevant laws and regulations were the basis for the ethical review, and the ethics committee should adopt appropriate review methods based on regulations and hospital ethical standard operating procedures. The ethics committee should focus on the feasibility, applicability, and rationality, the adequacy of informed consent, the protection of rights and interests and privacy of subjects, as well as the qualification and standard operating procedures of electronic platforms for conducting decentralized drug clinical trials. ConclusionDecentralized drug clinical trials are in their early stages and urgently require guidance from relevant laws and regulations. Ethical review is also constantly being refined through exploration. It is necessary to supervise the implementation of responsibilities by all parties, pay attention to the rights and interests of subjects, and gradually promote the implementation of decentralized drug clinical trials.
2.The two-year follow up study on the association between new caries risk in school aged children and multi dimensional sleep indicators
LU Xiuzhen, HUANG Chuanlong, LI Yang, ZUO Min, SUN Ying, CHEN Xin
Chinese Journal of School Health 2025;46(4):579-583
Objective:
To explore the prospective association between multidimensional sleep indicators and the risk of newlyonset dental caries, providing a reference for childrens oral healthrelated sleep intervention.
Methods:
In October 2021, 1 417 students in grades 1 to 4 (aged 6 to 11) from two elementary schools in Bengbu, Anhui Province, were selected by cluster sampling method. Surveys and followup visits were conducted at baseline (T1), November 2022 (T2), May 2023 (T3), and November 2023 (T4), respectively, including parental questionnaires, oral health and physical examination. Bedtime, sleep duration, sleep midpoint, social jet lag, weekend catchup sleep, and sleep habits were collected and calculated. A multifactorial Cox proportional risk regression model was used to analyze the association between multidimensional sleep indicators and newlyonset caries in schoolaged children after 2 years.
Results:
The prevalence of dental caries in children was 65.1% at baseline, and the prevalence was 59.0% at the end of the 2year followup. Cox proportional risk regression model showed that for every 1point increase in the childrens bedtime resistance, nocturnal awakenings, parasomnias, and daytime sleepiness scores, the risk of newlyonset caries increased by 12% (HR=1.12, 95%CI=1.08-1.15), 22% (HR=1.22, 95%CI=1.15-1.29), 12% (HR=1.12, 95%CI=1.08-1.17), and 15% (HR=1.15, 95%CI=1.12-1.19), respectively; the risk of newlyonset caries increased by 23% for each 1 h increase in the length of weekend catchup sleep (HR=1.23, 95%CI=1.14 -1.33); compared with children who went to bed before 21:00 on school days, those who went to bed later than 22:00 had a 57% higher risk of newlyonset caries (HR=1.57, 95%CI=1.22-2.03). Compared to children who slept adequately (≥9 h/d), those with insufficient sleep had a 67% higher risk of new caries (HR=1.67, 95%CI=1.43-1.95) (P<0.01).
Conclusions
These findings suggest a significant association between sleep patterns/sleep disorders and the development of childhood dental caries. Incorporating sleep behavior optimization and sleep quality improvement into comprehensive caries prevention and oral health management protocols may represent a promising intervention strategy to enhance childrens oral health outcomes.
3.Cost-utility analysis of HIV screening in blood donors using a decision-tree Markov model
Liqin HUANG ; Lilin WANG ; Linfen WU ; Jiahui ZUO ; Jinfeng ZENG
Chinese Journal of Blood Transfusion 2025;38(7):958-963
Objective: To develop a comprehensive health economics evaluation model for HIV blood screening using Markov modeling, so as to evaluate the quality-of-life adjustment years (QALYs) gained by transfusion recipients after implementation of blood HIV screening. Methods: Shenzhen Blood Center was selected as the validation case for model development. Based on historical HIV screening data of Shenzhen Blood Center and published literature, the health economics evaluation of donor HIV screening was performed using cost-utility analysis. The single factor sensitivity analysis was performed on parameters in the model. Results: 3.09 QALYs were gained for each transfusion recipient prevented from HIV infection. During 2020-2023, donor HIV screening at Shenzhen Blood Center saved 506.76 QALYs, and each QALY saved 182 900 yuan. Conclusion: From the perspective of long-term benefit of transfusion recipients, HIV screening of blood donors demonstrates high health and economic value.
4.Cost-utility analysis of HIV screening in blood donors using a decision-tree Markov model
Liqin HUANG ; Lilin WANG ; Linfen WU ; Jiahui ZUO ; Jinfeng ZENG
Chinese Journal of Blood Transfusion 2025;38(7):958-963
Objective: To develop a comprehensive health economics evaluation model for HIV blood screening using Markov modeling, so as to evaluate the quality-of-life adjustment years (QALYs) gained by transfusion recipients after implementation of blood HIV screening. Methods: Shenzhen Blood Center was selected as the validation case for model development. Based on historical HIV screening data of Shenzhen Blood Center and published literature, the health economics evaluation of donor HIV screening was performed using cost-utility analysis. The single factor sensitivity analysis was performed on parameters in the model. Results: 3.09 QALYs were gained for each transfusion recipient prevented from HIV infection. During 2020-2023, donor HIV screening at Shenzhen Blood Center saved 506.76 QALYs, and each QALY saved 182 900 yuan. Conclusion: From the perspective of long-term benefit of transfusion recipients, HIV screening of blood donors demonstrates high health and economic value.
5.Associations between serum NLRP3, NEK7 level and pulmonary fibrosis among patients with coal workers' pneumoconiosis
HUANG Jingying ; HANG Wenlu ; BO Yun ; ZUO Shurun ; XIN Lihong ; ZHAO Jie
Journal of Preventive Medicine 2025;37(8):827-831
Objective:
To explore the association between serum nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), NIMA-related kinase 7 (NEK7) and pulmonary fibrosis among patients with coal workers' pneumoconiosis, so as to provide a basis for the assessment of the degree of pulmonary fibrosis.
Methods:
Coal workers with pneumoconiosis hospitalized in the Second Affiliated Hospital of Xuzhou Medical University from July 2022 to July 2023 were selected by simple random sampling. Data such as age, stage of pneumoconiosis, and dust-exposure duration were collected through the hospital's electronic medical record management system. Venous blood was collected to detect the levels of serum NLRP3 and NEK7. High-resolution computed tomography (HRCT) image data of the chest were obtained through the hospital's imaging reporting system. The left and right lungs were divided into 6 pulmonary regions according to the upper, middle, and lower parts. The pulmonary fibrosis score was quantified according to the proportion of the pulmonary area occupied by HRCT manifestations of pulmonary fibrosis, including reticular shadows, pleural and interlobular septal thickening, traction bronchiectasis, and honeycombing. The association between the levels of serum NLRP3, NEK7, and pulmonary fibrosis was analyzed using a multiple linear regression model.
Results:
A total of 81 patients with coal workers' pneumoconiosis were included, all of whom were male, with a mean age of (71.46±11.69) years. There were 48, 28, and 5 cases in stage Ⅰ, stage Ⅱ, and stage Ⅲ of pneumoconiosis pathological staging, accounting for 59.26%, 34.57%, and 6.17%, respectively. There were 45 cases of tunneling and coal mining, accounting for 55.56%. There were 41 cases with dust exposure years of ≥30 years, accounting for 50.62%. The median serum NLRP3 and NEK7 in patients with coal workers' pneumoconiosis were 2.01 (interquartile range, 2.33) ng/mL and 0.98 (interquartile range, 0.83) ng/mL. The median score of pulmonary fibrosis was 5.00 (interquartile range, 5.50) points. After adjusting for age, stage of pneumoconiosis, type of work and dust-exposure duration, multiple linear regression analysis showed that serum NLRP3 (β'=0.649) and NEK7 (β'=0.346) were positively correlated with the pulmonary fibrosis score.
Conclusion
The increase in the levels of serum NLRP3 and NEK7 in patients with coal workers' pneumoconiosis is related to the increase in the degree of pulmonary fibrosis.
6.Salvianolate injection ameliorates cardiomyopathy by regulating autophagic flux through miR-30a/becn1 axis in zebrafish.
Jianxuan LI ; Yang ZHANG ; Zhi ZUO ; Zhenzhong ZHANG ; Ying WANG ; Shufu CHANG ; Jia HUANG ; Yuxiang DAI ; Junbo GE
Chinese Medical Journal 2025;138(20):2604-2614
BACKGROUND:
Salvianolate is a compound mainly composed of salvia magnesium acetate, which is extracted from the Chinese herb Salvia miltiorrhiza . In recent years, salvianolate injection has been widely used in the treatment of cardiovascular diseases, but the mechanism of how it can alleviate cardiotoxicity remains unclear.
METHODS:
The cardiac injury model was constructed by treatment with doxorubicin (Dox) or azithromycin (Azi) in zebrafish larvae. Heart phenotype, heart rate, and cardiomyocyte apoptosis were observed in the study. RNA-sequencing (RNA-seq) analysis was used to explore the underlying mechanism of salvianolate treatment. Moreover, cardiomyocyte autophagy was assessed by in situ imaging. In addition, the miR-30a/becn1 axis regulation by salvianolate was further investigated.
RESULTS:
Salvianolate treatment reduced the proportion of pericardial edema, recovered heart rate, and inhibited cardiomyocyte apoptosis in Dox/Azi-administered zebrafish larvae. Mechanistically, salvianolate regulated the lysosomal pathway and promoted autophagic flux in zebrafish cardiomyocytes. The expression level of becn1 was increased in Dox-induced myocardial tissue injury after salvianolate administration; overexpression of becn1 in cardiomyocytes alleviated the Dox/Azi-induced cardiac injury and promoted autophagic flux in cardiomyocytes, while becn1 knockdown blocked the effects of salvianolate. In addition, miR-30a, negatively regulated by salvianolate, partially inhibited the cardiac amelioration of salvianolate by targeting becn1 directly.
CONCLUSION
This study has proved that salvianolate reduces cardiomyopathy by regulating autophagic flux through the miR-30a/becn1 axis in zebrafish and is a potential drug for adjunctive Dox/Azi therapy.
Animals
;
Zebrafish
;
MicroRNAs/genetics*
;
Autophagy/drug effects*
;
Myocytes, Cardiac/metabolism*
;
Cardiomyopathies/metabolism*
;
Beclin-1/genetics*
;
Apoptosis/drug effects*
;
Plant Extracts/therapeutic use*
;
Doxorubicin
7.Decoding the immune microenvironment of secondary chronic myelomonocytic leukemia due to diffuse large B-cell lymphoma with CD19 CAR-T failure by single-cell RNA-sequencing.
Xudong LI ; Hong HUANG ; Fang WANG ; Mengjia LI ; Binglei ZHANG ; Jianxiang SHI ; Yuke LIU ; Mengya GAO ; Mingxia SUN ; Haixia CAO ; Danfeng ZHANG ; Na SHEN ; Weijie CAO ; Zhilei BIAN ; Haizhou XING ; Wei LI ; Linping XU ; Shiyu ZUO ; Yongping SONG
Chinese Medical Journal 2025;138(15):1866-1881
BACKGROUND:
Several studies have demonstrated the occurrence of secondary tumors as a rare but significant complication of chimeric antigen receptor T (CAR-T) cell therapy, underscoring the need for a detailed investigation. Given the limited variety of secondary tumor types reported to date, a comprehensive characterization of the various secondary tumors arising after CAR-T therapy is essential to understand the associated risks and to define the role of the immune microenvironment in malignant transformation. This study aims to characterize the immune microenvironment of a newly identified secondary tumor post-CAR-T therapy, to clarify its pathogenesis and potential therapeutic targets.
METHODS:
In this study, the bone marrow (BM) samples were collected by aspiration from the primary and secondary tumors before and after CD19 CAR-T treatment. The CD45 + BM cells were enriched with human CD45 microbeads. The CD45 + cells were then sent for 10× genomics single-cell RNA sequencing (scRNA-seq) to identify cell populations. The Cell Ranger pipeline and CellChat were used for detailed analysis.
RESULTS:
In this study, a rare type of secondary chronic myelomonocytic leukemia (CMML) were reported in a patient with diffuse large B-cell lymphoma (DLBCL) who had previously received CD19 CAR-T therapy. The scRNA-seq analysis revealed increased inflammatory cytokines, chemokines, and an immunosuppressive state of monocytes/macrophages, which may impair cytotoxic activity in both T and natural killer (NK) cells in secondary CMML before treatment. In contrast, their cytotoxicity was restored in secondary CMML after treatment.
CONCLUSIONS
This finding delineates a previously unrecognized type of secondary tumor, CMML, after CAR-T therapy and provide a framework for defining the immune microenvironment of secondary tumor occurrence after CAR-T therapy. In addition, the results provide a rationale for targeting macrophages to improve treatment strategies for CMML treatment.
Humans
;
Lymphoma, Large B-Cell, Diffuse/therapy*
;
Tumor Microenvironment/genetics*
;
Antigens, CD19/metabolism*
;
Leukemia, Myelomonocytic, Chronic/genetics*
;
Immunotherapy, Adoptive/adverse effects*
;
Male
;
Single-Cell Analysis/methods*
;
Female
;
Sequence Analysis, RNA/methods*
;
Receptors, Chimeric Antigen
;
Middle Aged
8.Cerebral endothelial 3-mercaptopyruvate sulfurtransferase improves ischemia-induced cognitive impairment via interacting with protein phosphatase 2A.
Li ZHU ; Yi HUANG ; Jing JIN ; Rongjun ZOU ; Rui ZUO ; Yong LUO ; Ziqing SONG ; Linfeng DAI ; Minyi ZHANG ; Qiuhe CHEN ; Yunting WANG ; Wei WANG ; Rongrong HE ; Yang CHEN
Acta Pharmaceutica Sinica B 2025;15(1):314-330
The catalytic activity of 3-mercaptopyruvate (3MP) sulfurtransferase (MPST) converts 3MP to hydrogen sulfide (H2S). However, the regulatory mechanisms governing MPST and its impact on the brain remain largely unexplored. Our study reveals the neuroprotective role of endothelial MPST-generated H2S, regulated by protein phosphatase 2A (PP2A). Bioinformatics analysis and RNA sequencing demonstrated that endothelial PP2A is associated with neurodegenerative disease pathways. Cerebral ischemic mice exhibited significant inactivation of endothelial PP2A, evidenced by the reduction of PP2Acα in the brain endothelium. Mice with endothelium-specific null PP2A (PP2AEC-cKO) exhibited neuronal loss, cognitive dysfunction, and long-term potentiation deficits. Postnatal inactivation of endothelial PP2A also contributes to cognitive dysfunction and neuronal loss. However, regaining endothelial PP2A activity by overexpressing Ppp2ca rescued neuronal dysfunction. Mechanistically, PP2A deficiency is intricately linked to the MPST-H2S signaling pathway. A robust reduction in endothelial MPST-dependent H2S production followed PP2A deficiency. Exogenous H2S treatment and AAV-mediated overexpression of MPST in brain endothelial cells significantly mitigated neuronal dysfunction in PP2AEC-cKO mice. Furthermore, PP2A deficiency promotes an increase in calcium influx and calpain2 phosphorylation, subsequently leading to MPST degradation. The PP2A activator (FTY720) and MPST activator (3MP sodium) both remarkably restored endothelial MPST-dependent H2S production, subsequently rescuing ischemia-induced neurological deficits. In conclusion, our study demonstrates that endothelial PP2A deficiency leads to MPST degradation by activating calpain2, thus damaging neuronal function.
9.Deubiquitinase OTUD6A alleviates acetaminophen-induced liver injury by targeting EZH2 to reduce cell death in hepatocytes.
Yanni ZHAO ; Tianyang JIN ; Tingxin XU ; Yi FANG ; Qingsong ZHENG ; Wu LUO ; Weiwei ZHU ; Yue CHEN ; Jiong WANG ; Yi CHEN ; Wei ZUO ; Lijiang HUANG ; Guang LIANG ; Yi WANG
Acta Pharmaceutica Sinica B 2025;15(9):4772-4788
Acetaminophen (APAP) is the primary cause of drug-induced acute liver failure. Ovarian tumor deubiquitinase 6A (OTUD6A), a recently discovered deubiquitinase of the OTU family, has been primarily studied in tumor contexts. However, its role in APAP-induced liver injury (AILI) remains unclear. Therefore, this study aimed to investigate the involvement of OTUD6A in the pathogenesis of AILI. Our findings demonstrated a substantial upregulation of OTUD6A in both the liver tissue and isolated hepatocytes of mice following APAP stimulation. OTUD6A knockout exacerbated APAP-induced inflammation, hepatocyte necrosis, and liver injury, whereas OTUD6A overexpression alleviated these pathologies. Mechanistically, OTUD6A directly interacted with the enhancer of zeste homolog 2 (EZH2) and selectively removed K48-linked polyubiquitin chains from EZH2, enhancing its stability. This resulted in increased protein levels of EZH2 and H3K27me3, as well as reduced endoplasmic reticulum (ER) stress and cell death in hepatocytes. Collectively, our research uncovers a novel role for OTUD6A in mitigating APAP-induced liver injury by promoting EZH2 stabilization.
10.Nodakenin ameliorates TNBS-induced experimental colitis in mice by inhibiting pyroptosis of intestinal epithelial cells.
Ju HUANG ; Lixia YIN ; Minzhu NIU ; Zhijun GENG ; Lugen ZUO ; Jing LI ; Jianguo HU
Journal of Southern Medical University 2025;45(2):261-268
OBJECTIVES:
To investigate the therapeutic mechanism of nodakenin for Crohn's disease (CD)-like colitis in mice.
METHODS:
Using a colonic organoid model with lipopolysaccharide (LPS)- and ATP-induced pyroptosis, we investigated the effects of nodakenin on pyroptosis, intestinal barrier function and inflammatory response by detecting key pyroptosis-regulating factors and assessing changes in permeability and pro-inflammatory factors. In a mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis, the therapeutic effect of nodakenin was evaluated by measuring changes in body weight, DAI score, colonic histopathologies, inflammation score, intestinal barrier function and intestinal epithelial cell pyroptosis. The mechanism of nodakenin protection against pyroptosis of intestinal epithelial cells was explored using network pharmacology analysis and in vivo and in vitro experiments.
RESULTS:
In LPS- and ATP-induced colonic organoids, treatment with nodakenin significantly inhibited the expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11, improved intestinal FITC-dextran (FD4, 4000) permeability, and decreased the levels of IL-1β and IL-18. In the mouse model of TNBS-induced colitis, nodakenin treatment significantly alleviated weight loss, reduced DAI score, inflammatory cell infiltration and inflammation score, and decreased serum FD4 and I-FABP levels and bacteria translocation to the mesenteric lymph nodes, spleen and liver. The mice with nodakenin treatment had also lowered expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11 in the intestinal mucosa. Network pharmacology analysis suggested that the inhibitory effect of nodakenin on colitis was associated with the PI3K/Akt pathway. In both the colonic organoid model and mouse models of colitis, nodakenin effectively inhibited the activation of the PI3K/Akt pathway, and the application of IGF-1, a PI3K/Akt pathway activator, strongly attenuated the protective effect of nodakenin against intestinal epithelial cell pyroptosis and intestinal barrier dysfunction.
CONCLUSIONS
Nodakenin protects intestinal barrier function and alleviates CD-like colitis in mice at least partly by inhibiting PI3K/Akt signaling to reduce intestinal epithelial cell pyroptosis.
Animals
;
Pyroptosis/drug effects*
;
Mice
;
Trinitrobenzenesulfonic Acid
;
Colitis/drug therapy*
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/cytology*
;
Disease Models, Animal
;
Coumarins/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Crohn Disease/drug therapy*


Result Analysis
Print
Save
E-mail