1.Polygonatum Sibiricum Polysaccharides Improve Colonic Injury in a Mouse Model of Chronic Obstructive Pulmonary Disease by Regulating Bile Acid Metabolism in the Colon
Wanrong LI ; Mengting TAO ; Yuanfeng ZOU ; Dan HE ; Nengyuan TANG ; Xin TAN ; Lixia LI ; Dandan CHEN
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(3):431-443
ObjectiveTo investigate the effect and mechanism of Polygonatum neutral polysaccharides from sibiricum (PSP-NP) on colon injury in mice with chronic obstructive pulmonary disease (COPD). MethodsMale C57BL/6J mice were randomly divided into a control group, a COPD model group, and a PSP-NP group. The COPD model was established using smoke exposure combined with intranasal LPS administration. The PSP-NP group was simultaneously treated daily with 200 mg/kg of PSP-NP via intragastric gavage, while the other groups received an equal volume of saline. HE staining was used to observe the pathological changes in the colon. ELISA was employed to detect the levels of LPS in serum and the expressions of ZO-1, Occludin, IL-6, and TNF-α in colon tissue. UPLC-MS was used to detect the types and contents of bile acids in colonic content, and to screen for differential bile acids. Differential microbial flora were identified using 16S rRNA gene sequencing, and correlation analysis was conducted with differential bile acids. PSP-NP was combined with the differential bile acids cholic acid (CA), and deoxycholic acid (DCA) in vitro to analyze the binding capacity of PSP-NP for CA and DCA. PSP-NP was applied to NCM460 normal colonic epithelial cells cultured in CA and DCA. Cell migration ability was assessed using the scratch assay, and the mRNA expression levels of inflammatory cytokines TNF-α, IL-6, and NF-κB were measured by RT-qPCR. ResultsPSP-NP effectively improved colonic damage in COPD model mice, enhanced mechanical barrier function, alleviated inflammatory response, and regulated abnormal changes in colonic flora and bile acid metabolism. Correlation analysis further revealed that PSP-NP regulated colonic bile acid metabolism and reduced the redundancy of secondary bile acids by increasing the relative abundance of Bacteroidota, Verrucomicrobiota, Bacteroides, and Akkermansia, while decreasing the relative abundance of Lactobacillus and Bifidobacterium. Notably, in vitro binding assays demonstrated that PSP-NP bound to differential bile acids DCA and CA, with the strongest binding capacity for DCA at 58.2%. In cellular functional studies, DCA inhibited the migration ability of colonic epithelial cells NCM460 and significantly increased the relative mRNA expression levels of inflammatory factors TNF-α, IL-6, and NF-κB. Importantly, co-treatment with PSP-NP significantly ameliorated the impact of DCA on NCM460 cells. ConclusionsPSP-NP may significantly improve colonic damage in COPD model mice. The mechanism may involve the regulation of colonic bile acid metabolism and bile acid profiles through both microbial modulation and direct binding, thereby reducing the damage caused by secondary bile acids such as DCA to colonic epithelial cells.
2.Application and clinical efficacy of red blood cell therapeutic apheresis in erythropoietic protoporphyria and hereditary hemochromatosis
Haoqiang LIU ; Caihan ZHAO ; Qing YUAN ; Lixia XIE ; Yong ZOU ; Ying LU
Chinese Journal of Blood Transfusion 2025;38(7):915-921
Objective: To explore the application and clinical efficacy of red blood cell therapeutic apheresis in erythropoietic protoporphyria (EPP) and hereditary hemochromatosis (HH). Methods: 1) The EPP patient was hospitalized twice for "abdominal pain, nausea, vomiting, and brown urine". One and two sessions of red blood cell exchange/therapeutic plasma exchange (RCE/TPE) were respectively performed during the two hospitalizations. During each session, one RCE with 6-8 units of leukoreduced RBCs and 3-4 TPE procedures with 1 800-2 000 mL of frozen plasma was conducted. Biochemical parameters were monitored before and after treatment. 2) The HH patient was hospitalized for “repeatedly elevated aminotransferases”. Erythrocytapheresis was performed once, removing 550 mL of red blood cells, and venous phlebotomy was conducted once every 2 months subsequently. Blood routine and ferritin levels were assessed before and after treatment. Results: 1) During the first hospitalization, the EPP patient was relieved of the abdominal pain and brown urine after therapeutic apheresis. The total bilirubin level decreased from 141.8 μmol/L on admission to 68.6 μmol/L at discharge, with a symptom remission duration of 10 months. During the second hospitalization, the EPP patient still had recurrent abdominal pain after therapeutic apheresis. He developed psychiatric symptoms and gastrointestinal bleeding subsequently, accompanied by elevated bilirubin levels. Liver function deteriorated and the patient went into the state of the end-stage liver disease (ESLD). 2) For the HH patient, the hemoglobin level prior to erythrocytapheresis and vein phlebotomy was 150-160 g/L, with the lowest value occurring two days after erythrocytapheresis, decreasing to 107 g/L. The ferritin level before erythrocytapheresis was 2 428.08 ng/mL and it declined gradually after theraphy, with the lowest value occurring two months after erythrocytapheresis, decreasing to 1 094 ng/mL. The ferritin level was 1 114 ng/mL two months following the first vein phlebotomy, however it increased to 1 472 ng/mL two months after the second vein phlebotomy. Conclusion: RCE/TPE may alleviate protoporphyrin liver disease and help patients with bridging liver transplantation before EPP developments to ESLD. For HH patients with significantly elevated ferritin levels, erythrocytapheresis reduces serum ferritin more quickly and maintains its level longer relative to phlebotomy.
3.Application and clinical efficacy of red blood cell therapeutic apheresis in erythropoietic protoporphyria and hereditary hemochromatosis
Haoqiang LIU ; Caihan ZHAO ; Qing YUAN ; Lixia XIE ; Yong ZOU ; Ying LU
Chinese Journal of Blood Transfusion 2025;38(7):915-921
Objective: To explore the application and clinical efficacy of red blood cell therapeutic apheresis in erythropoietic protoporphyria (EPP) and hereditary hemochromatosis (HH). Methods: 1) The EPP patient was hospitalized twice for "abdominal pain, nausea, vomiting, and brown urine". One and two sessions of red blood cell exchange/therapeutic plasma exchange (RCE/TPE) were respectively performed during the two hospitalizations. During each session, one RCE with 6-8 units of leukoreduced RBCs and 3-4 TPE procedures with 1 800-2 000 mL of frozen plasma was conducted. Biochemical parameters were monitored before and after treatment. 2) The HH patient was hospitalized for “repeatedly elevated aminotransferases”. Erythrocytapheresis was performed once, removing 550 mL of red blood cells, and venous phlebotomy was conducted once every 2 months subsequently. Blood routine and ferritin levels were assessed before and after treatment. Results: 1) During the first hospitalization, the EPP patient was relieved of the abdominal pain and brown urine after therapeutic apheresis. The total bilirubin level decreased from 141.8 μmol/L on admission to 68.6 μmol/L at discharge, with a symptom remission duration of 10 months. During the second hospitalization, the EPP patient still had recurrent abdominal pain after therapeutic apheresis. He developed psychiatric symptoms and gastrointestinal bleeding subsequently, accompanied by elevated bilirubin levels. Liver function deteriorated and the patient went into the state of the end-stage liver disease (ESLD). 2) For the HH patient, the hemoglobin level prior to erythrocytapheresis and vein phlebotomy was 150-160 g/L, with the lowest value occurring two days after erythrocytapheresis, decreasing to 107 g/L. The ferritin level before erythrocytapheresis was 2 428.08 ng/mL and it declined gradually after theraphy, with the lowest value occurring two months after erythrocytapheresis, decreasing to 1 094 ng/mL. The ferritin level was 1 114 ng/mL two months following the first vein phlebotomy, however it increased to 1 472 ng/mL two months after the second vein phlebotomy. Conclusion: RCE/TPE may alleviate protoporphyrin liver disease and help patients with bridging liver transplantation before EPP developments to ESLD. For HH patients with significantly elevated ferritin levels, erythrocytapheresis reduces serum ferritin more quickly and maintains its level longer relative to phlebotomy.
4.Effects of home hospice care team service model on fall risk in patients with end-stage malignant tumors and main caregivers
Fangping ZHOU ; Yuzhen HE ; Mingcai HU ; Lixia ZOU ; Rixia XIAO ; Xuejun HUANG ; Jun ZHOU
Chinese Journal of Practical Nursing 2024;40(28):2165-2172
Objective:To explore the effects of home hospice care team service model in patients with end-stage malignant tumors and main caregivers, so as to provide intervention programs for improving the quality of life of patients with end-stage malignant tumors.Methods:In the prospective and controlled study, 106 patients with malignant tumors who received end-stage hospice care in Yuebei People′s Hospital and main caregivers from May 2021 to July 2021 were selected by convenience sampling method, and divided into trial group (53 pairs) and control group (53 pairs) according to the random number table method. The control group was treated with routine nursing intervention, and the trial group was given home hospice care team service model intervention based on the control group. The occurrence of falls and negative emotions and quality of life of patients, psychological stress of primary caregivers before and after intervention were observed by using Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS), Relative Stress Scale (RSS) and European Organization for Research and Treatment of Cancer Quality of Life Scale (EORTC QLQ-C30).Results:Finally, 103 patients and main caregivers completed the study, with 52 pairs in the control group and 51 pairs in the trial group. In the control group, the patients were 29 males and 23 females, aged (54.33 ± 12.24) years old,and the main caregivers were 22 males and 30 females, aged (41.67 ± 8.14) years old. In the trial group,the patients were 27 males and 24 females,aged (55.17 ± 10.56) years old,and the main caregivers were 24 males and 27 females, aged (43.62 ± 7.39) years old. After intervention, the total incidence of falls and the total incidence of fall complications in the trial group were 7.84% (4/51) and 1.96% (1/51), respectively, which were lower than 25.00% (13/52) and 11.54% (7/52) in the control group, the differences were statistically significant ( χ2=5.50, 4.75, both P<0.05). There was no significant difference in the score of SAS, SDS, RSS, EORTC QLQ-C30 before intervention between the two groups (all P>0.05). After intervention, the scores of SAS and SDS in trial group were (32.66 ± 3.18), (31.19 ± 4.50) points,which lower than those in control group (34.54 ± 3.91), (34.31 ± 4.03) points, the differences were statistically significant ( t=2.67, 2.51, both P<0.05). After intervention, the RSS scores of psychological distress, life disruption, negative emotion and total score of the main caregivers in trial group were (3.52 ± 0.48), (3.66 ±0.56), (3.47 ± 0.82), (10.65 ± 0.67) points, which were lower than those in the control group (4.74 ± 2.75), (4.67 ± 2.64), (4.12 ± 2.13), (13.53 ± 2.26) points, the differences were statistically significant ( t values were 2.04-8.73, all P<0.05). After intervention, the EORTC QLQ-C30 score in the trial group was (74.14 ± 5.64) points, which was lower than that in the control group (70.54 ± 7.07) points, the difference was statistically significant ( t=2.85, P<0.05). Conclusions:The application of home hospice care team service model can effectively reduce the risk of falls in patients with malignant tumor chemotherapy, improve the negative emotions of patients and the psychological stress state of their main caregivers, and improve the quality of life of patients.
5.Research progress in the pathogenesis of bortezomib-induced peripheral neuropathy
Jiao ZOU ; Mimi HUANG ; Lixia SONG ; Changqing TONG
Chinese Journal of Primary Medicine and Pharmacy 2024;31(6):948-952
Bortezomib exerts its anti-myeloma effect by reversibly inhibiting the proteasome through various mechanisms, and it is currently the first-line drug for the treatment of multiple myeloma in China. Bortezomib-induced peripheral neuropathy is one of the most common dose-limiting adverse reactions in the treatment process, which seriously affects the quality of life of patients, leading to dose reduction or even drug withdrawal. How to reduce or prevent Bortezomib-induced peripheral neuropathy remains a challenging problem in the treatment of multiple myeloma. Based on this, this article reviews the pathogenesis of Bortezomib-induced peripheral neuropathy from the perspectives of Schwann cells, neurons, astrocytes, macrophages, and other aspects.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.

Result Analysis
Print
Save
E-mail