1.Advances in inhalable nano-formulations.
Yinjia LUO ; Xiao YUE ; Ziyu ZHAO ; Xuejuan ZHANG
Journal of Zhejiang University. Medical sciences 2025;54(4):511-521
Nano-drug delivery systems offer significant benefits, including high specific surface area, structural and functional diversity, and surface modifiability. When formulated as inhalable nano-formulation, these can not only enable precise pulmonary drug delivery but also improve pulmonary bioavailability and enhance thera-peutic efficacy. Currently, there are four types of inhalable nano-formulations for the treatment of respiratory diseases. Inhalable liquid preparations exhibit facile manufactur-ability and broad applicability yet demonstrate compromised stability during aerosolization. Through structure optimization, surface modification, dispersion medium optimization and device improvement, the atomization stability of nano-drug has been enhanced. Pressurized metered-dose inhalers loaded with nano-drugs face technical challenges: conventional propellants may dissolve nano-carriers, whereas co-solvents like ethanol compromise delivery efficiency. Thus, it is necessary to develop novel propellants that provide thermodynamic stability and optimal delivery performance. Nano-drug formulations in dry powder inhalers exhibit relatively favorable physical stability, however, pulmonary delivery efficiency and nanoparticles integrity during processing remain problematic. Pulmonary delivery efficiency can be improved by employing strategies such as blending excipients to promote the re-dispersibility of nanoparticle agglomerates, optimizing the design of microcarrier, and innovating preparation processes. In contrast, soft mist inhalers are an ideal option for pulmonary delivery of nano-drugs owing to their gentle and efficient atomization properties to maintain nano-drug integrity. This review summarizes the inhalable nano-formulations and focuses on challenges and proposed strategies encoun-tered in integrating nano-drug delivery systems and inhalation drug delivery systems. It aims to provide references for the future development of inhalable nano-formulations.
Administration, Inhalation
;
Humans
;
Drug Delivery Systems/methods*
;
Nanoparticles
;
Dry Powder Inhalers
;
Nanoparticle Drug Delivery System
;
Drug Compounding
;
Metered Dose Inhalers
;
Drug Carriers
2.Identification of shared key genes and pathways in osteoarthritis and sarcopenia patients based on bioinformatics analysis.
Yuyan SUN ; Ziyu LUO ; Huixian LING ; Sha WU ; Hongwei SHEN ; Yuanyuan FU ; Thainamanh NGO ; Wen WANG ; Ying KONG
Journal of Central South University(Medical Sciences) 2025;50(3):430-446
OBJECTIVES:
Osteoarthritis (OA) and sarcopenia are significant health concerns in the elderly, substantially impacting their daily activities and quality of life. However, the relationship between them remains poorly understood. This study aims to uncover common biomarkers and pathways associated with both OA and sarcopenia.
METHODS:
Gene expression profiles related to OA and sarcopenia were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between disease and control groups were identified using R software. Common DEGs were extracted via Venn diagram analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to identify biological processes and pathways associated with shared DEGs. Protein-protein interaction (PPI) networks were constructed, and candidate hub genes were ranked using the maximal clique centrality (MCC) algorithm. Further validation of hub gene expression was performed using 2 independent datasets. Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive value of key genes for OA and sarcopenia. Mouse models of OA and sarcopenia were established. Hematoxylin-eosin and Safranin O/Fast Green staining were used to validate the OA model. The sarcopenia model was validated via rotarod testing and quadriceps muscle mass measurement. Real-time reverse transcription PCR (real-time RT-PCR) was employed to assess the mRNA expression levels of candidate key genes in both models. Gene set enrichment analysis (GSEA) was conducted to identify pathways associated with the selected shared key genes in both diseases.
RESULTS:
A total of 89 common DEGs were identified in the gene expression profiles of OA and sarcopenia, including 76 upregulated and 13 downregulated genes. These 89 DEGs were significantly enriched in protein digestion and absorption, the PI3K-Akt signaling pathway, and extracellular matrix-receptor interaction. PPI network analysis and MCC algorithm analysis of the 89 common DEGs identified the top 17 candidate hub genes. Based on the differential expression analysis of these 17 candidate hub genes in the validation datasets, AEBP1 and COL8A2 were ultimately selected as the common key genes for both diseases, both of which showed a significant upregulation trend in the disease groups (all P<0.05). The value of area under the curve (AUC) for AEBP1 and COL8A2 in the OA and sarcopenia datasets were all greater than 0.7, indicating that both genes have potential value in predicting OA and sarcopenia. Real-time RT-PCR results showed that the mRNA expression levels of AEBP1 and COL8A2 were significantly upregulated in the disease groups (all P<0.05), consistent with the results observed in the bioinformatics analysis. GSEA revealed that AEBP1 and COL8A2 were closely related to extracellular matrix-receptor interaction, ribosome, and oxidative phosphorylation in OA and sarcopenia.
CONCLUSIONS
AEBP1 and COL8A2 have the potential to serve as common biomarkers for OA and sarcopenia. The extracellular matrix-receptor interaction pathway may represent a potential target for the prevention and treatment of both OA and sarcopenia.
Sarcopenia/genetics*
;
Osteoarthritis/genetics*
;
Computational Biology/methods*
;
Humans
;
Protein Interaction Maps/genetics*
;
Animals
;
Mice
;
Gene Expression Profiling
;
Gene Ontology
;
Transcriptome
;
Male
;
Signal Transduction/genetics*
;
Gene Regulatory Networks
3.Mechanism by which mechanical stimulation regulates chondrocyte apoptosis and matrix metabolism via primary cilia to delay osteoarthritis progression.
Huixian LING ; Sha WU ; Ziyu LUO ; Yuyan SUN ; Hongwei SHEN ; Haiqi ZHOU ; Yuanyuan FU ; Wen WANG ; Thai Namanh NGO ; Ying KONG
Journal of Central South University(Medical Sciences) 2025;50(5):864-875
OBJECTIVES:
Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
METHODS:
In vivo, conditional knockout mice lacking intraflagellar transport 88 (IFT88flox/flox IFT88 knockout; i.e., primary cilia-deficient mice) were generated, with wild-type mice as controls. OA models were established via anterior cruciate ligament transection combined with destabilization of the medial meniscus, followed by treadmill exercise intervention. OA progression was evaluated by hematoxylin-eosin staining, safranin O-fast green staining, and immunohistochemistry; apoptosis was assessed by TUNEL staining; and limb function by rotarod testing. In vitro, primary articular chondrocytes were isolated from mice and transfected with lentiviral vectors to suppress IFT88 expression, thereby constructing a primary cilia-deficient cell model. Interleukin-1β (IL-1β) was used to induce an inflammatory environment, while cyclic tensile strain (CTS) was applied via a cell stretcher to mimic mechanical loading on chondrocytes. Immunofluorescence and Western blotting were used to detect the protein expression levels of type II collagen α1 chain (COL2A1), primary cilia, IFT88, and caspase-12; reverse transcription polymerase chain reaction was performed to assess COL2A1 mRNA levels; and flow cytometry was used to evaluate apoptosis.
RESULTS:
In vivo, treadmill exercise significantly reduced Osteoarthritis Research Society International (OARSI) scores and apoptotic cell rates, and improved balance ability in wild-type OA mice, whereas IFT88-deficient OA mice showed no significant improvement. In vitro, CTS inhibited IL-1β-induced ECM degradation and apoptosis in primary chondrocytes; however, this protective effect was abolished in cells with suppressed primary cilia expression.
CONCLUSIONS
Mechanical stimulation delays OA progression by mediating signal transduction through primary cilia, thereby inhibiting cartilage degeneration and chondrocyte apoptosis.
Animals
;
Chondrocytes/cytology*
;
Apoptosis/physiology*
;
Mice
;
Cilia/metabolism*
;
Osteoarthritis/pathology*
;
Extracellular Matrix/metabolism*
;
Mice, Knockout
;
Disease Progression
;
Interleukin-1beta
;
Male
;
Cells, Cultured
4.Association of sleep duration and physical exercise with dyslipidemia in older adults aged 80 years and over in China
Bing WU ; Yang LI ; Lanjing XU ; Zheng ZHANG ; Jinhui ZHOU ; Yuan WEI ; Chen CHEN ; Jun WANG ; Changzi WU ; Zheng LI ; Ziyu HU ; Fanye LONG ; Yudong WU ; Xuehua HU ; Kexin LI ; Fangyu LI ; Yufei LUO ; Yingchun LIU ; Yuebin LYU ; Xiaoming SHI
Chinese Journal of Epidemiology 2024;45(1):48-55
Objective:To explore the impact of sleep duration, physical exercise, and their interactions on the risk of dyslipidemia in older adults aged ≥80 (the oldest old) in China.Methods:The study subjects were the oldest old from four rounds of Healthy Aging and Biomarkers Cohort Study (2008-2009, 2011-2012, 2014 and 2017-2018). The information about their demographic characteristics, lifestyles, physical examination results and others were collected, and fasting venous blood samples were collected from them for blood lipid testing. Competing risk model was used to analyze the causal associations of sleep duration and physical exercise with the risk for dyslipidemia. Restricted cubic spline (RCS) function was used to explore the dose-response relationship between sleep duration and the risk for dyslipidemia. Additive and multiplicative interaction model were used to explore the interaction of sleep duration and physical exercise on the risk for dyslipidemia.Results:The average age of 1 809 subjects was (93.1±7.7) years, 65.1% of them were women. The average sleep duration of the subjects was (8.0±2.5) hours/day, 28.1% of them had sleep duration for less than 7 hours/day, and 27.2% had sleep for duration more than 9 hours/day at baseline survey. During the 9-year cumulative follow-up of 6 150.6 person years (follow-up of average 3.4 years for one person), there were 304 new cases of dyslipidemia, with an incidence density of 4 942.6/100 000 person years. The results of competitive risk model analysis showed that compared with those who slept for 7-9 hours/day, the risk for dyslipidemia in oldest old with sleep duration >9 hours/day increased by 22% ( HR=1.22, 95% CI: 1.07-1.39). Compared with the oldest old having no physical exercise, the risk for dyslipidemia in the oldest old having physical exercise decreased by 33% ( HR=0.67, 95% CI: 0.57-0.78). The RCS function showed a linear positive dose-response relationship between sleep duration and the risk for hyperlipidemia. The interaction analysis showed that physical exercise and sleep duration had an antagonistic effect on the risk for hyperlipidemia. Conclusion:Physical exercise could reduce the adverse effects of prolonged sleep on blood lipids in the oldest old.
5.Effect of Buzhong Yiqitang on Th17/Treg Immune Imbalance and Notch1 Signaling Pathway in AIT Mice
Zhuo ZHAO ; Nan SONG ; Ziyu LIU ; Pin LI ; Yue LUO ; Pengkun ZHANG ; Zhimin WANG ; Yuanping YIN ; Tianshu GAO ; Zhe JIN ; Xiao YANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):19-27
ObjectiveTo explore the effect of Buzhong Yiqitang on the immune imbalance of helper T cell 17 (Th17)/regulatory T cell (Treg) and Notch1 signaling pathway in mice with autoimmune thyroiditis (AIT). MethodA total of 60 8-week-old NOD.H-2h4 mice were randomly divided into the normal group, model group, western medicine group (selenium yeast tablet, 32.5 mg·kg-1), and low-dose (4.78 g·kg-1·d-1), middle-dose (9.56 g·kg-1·d-1), and high-dose (19 g·kg-1·d-1) Buzhong Yiqitang groups, with 10 mice in each group. The normal group was fed with distilled water, and the other groups were fed with water containing 0.05% sodium iodide for eight weeks. After the animal model of AIT was formed spontaneously, the mice were killed under anesthesia after intragastric administration for eight weeks. Serum anti-thyroglobulin antibodies (TGAb), thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroid hormone (FT4) were detected by enzyme-linked immunosorbent assay (ELISA), and thyroid tissue changes were observed by hematoxylin-eosin (HE) staining. The mRNA and protein expressions of retinoid-related orphan receptor-γt (RORγt), interleukin (IL)-17, forkhead box P3 (FoxP3), IL-10, Notch1, and hair division-related enhancer 1 (Hes1) in thyroid tissue were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the normal group, the thyroid structure of the model group was severely damaged, and lymphocytes were infiltrated obviously. The levels of serum TGAb, FT3, and FT4 contents were significantly increased, and TSH content was significantly decreased (P<0.01). The mRNA and protein expression levels of RORγt, IL-17, Notch1, and Hes1 were significantly increased, while those of FoxP3 and IL10 were significantly decreased in the model group (P<0.01). Compared with the model group, thyroid structural damage and lymphocyte infiltration were improved in the treatment groups, and serum TGAb, FT3, and FT4 contents were significantly decreased. TSH content was increased, and mRNA and protein expression levels of RORγt, IL-17, Notch1, and Hes1 were decreased. mRNA and protein expression levels of FoxP3 and IL-10 were increased to different degrees (P<0.05, P<0.01), and the middle-dose Buzhong Yiqitang group had the most significant intervention effect. ConclusionBuzhong Yiqitang can alleviate the thyroid structural damage in AIT mice, and its mechanism may be related to improving the abnormal differentiation of Th17/Treg immune cells and inhibiting the activation of the Notch1 signaling pathway.
6.Exploration on the Effects of Buzhong Yiqi Decoction on the PKCβ/Erk1/2/NF-κB Signaling Pathway in Mice with Autoimmune Thyroiditis
Yue LUO ; Ziyu LIU ; Zhimin WANG ; Zhuo ZHAO ; Mengzhen WANG ; Xiao YANG
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(11):123-128
Objective To explore the effects of Buzhong Yiqi Decoction on PKCβ/Erk1/2/NF-κB signaling pathway in mice with autoimmune thyroiditis(AIT);To explore the mechanism of Buzhong Yiqi Decoction in the treatment of AIT.Methods Totally 808-week-old NOD.H-2h4 mice were randomly divided into control group,model group,TCM group and selenium yeast tablet group,with 20 mice in each group.The control group was fed with distilled water,and the other groups were given 0.05%sodium iodide for 8 weeks to establish AIT mice model.The medication groups were administered by gavage with corresponding drugs for 8 weeks.The morphology of thyroid tissue was detected by HE staining,ELISA was used to detected the contents of serum TGAb and TPOAb,RT-qPCR was used to detect the expression of PKCβ,Erk1/2,NF-κBp65,RORγt and IL-17 mRNA in thyroid tissue,the protein expressions of PKCβ,Erk1/2,NF-κBp65,RORγt and IL-17 in thyroid tissue were detected by Western blot.Results Compared with the control group,there were a large number of lymphocyte infiltration in thyroid tissue,and serum TGAb and TPOAb contents significantly increased(P<0.001),the expression of PKCβ,Erk1/2,NF-κBp65,RORγt and IL-17 mRNA and protein in thyroid tissue were significantly increased(P<0.001).Compared with the model group,the infiltration of lymphocytes in thyroid tissue of mice in TCM group and selenium yeast tablet group were alleviated,the contents of serum TGAb and TPOAb were significantly decreased(P<0.001),the mRNA and protein expressions of PKCβ,Erk1/2,NF-κBp65,RORγt and IL-17 in thyroid tissue were significantly decreased(P<0.001).There was no statistical significance in the indexes of TCM group and selenium yeast tablet group(P>0.05).Conclusion Buzhong Yiqi Decoction can regulate PKCβ/Erk1/2/NF-κB pathway,reduce inflammation in AIT mice and improve thyroid lymphocyte infiltration.
7.Treating hyperhidrosis from liver and spleen
Mengzhen WANG ; Yue LUO ; Ziyu LIU ; Fengyi GUO ; Yuanping YIN ; Xiao YANG
Journal of Beijing University of Traditional Chinese Medicine 2024;47(4):490-495
Hyperhidrosis is a disease in which excessive sweat is secreted,resulting in an abnormal increase in systemic or local perspiration.In traditional Chinese medicine,hyperhidrosis belongs to the category of sweating disease.It is caused by an imbalance between yin and yang and abnormal excretion of body fluid.Many doctors treat the sweating disease from the perspective of heart,lung,and kidney;in contrast,we discuss the etiology and pathogenesis of hyperhidrosis from the perspective of liver and spleen,explain the significance of harmonizing the liver and spleen to improve the sweating disease,and put forward the key pathogenic factors of stagnation liver qi and spleen deficiency,and disharmony between nutrient qi and defensive qi,and the imbalance between yin and yang are the key pathogenic factor.Most of the clinical treatment start from the liver and spleen.The main treatment principle is based on soothing the liver and relieving depression,invigorating the spleen and nourishing blood,and regulating and harmonizing the nutrient qi and defensive qi,paying attention to the relationship between qi and blood in zangfu organs,invigorating the spleen and replenishing qi to consolidate its foundation,soothing the liver and relieving depression to regulate its qi,and invigorating qi and blood and perspiration.Treatment can be supplemented with Xiaoyao Powder plus-minus,mainly to strengthen liver wood and spleen soil,acquire nourishment,smooth qi,nourish the five zang,reconcile qi and blood,enhance physical strength and peace of mind,ensure sufficient qi to arrest sweating,coordinate the liver and spleen,balance the ascending and descending phases,and harmonize the five zang organs.
8.Pathogenesis and targeted therapy of pemphigus
Rufan YAN ; Jieyue LIAO ; Ziyu GUO ; Nan YAO ; Wenyu ZHOU ; Shuaihantian LUO ; Guiying ZHANG ; Ming ZHAO
Chinese Journal of Dermatology 2024;57(4):374-378
In recent years, with the in-depth study of pemphigus, new pathogenesis has been identified based on the desmoglein antibody-mediated immune response mechanism, and new progress has been made in targeted therapy. This review summarizes recent advances in the pathogenesis and targeted therapy of pemphigus.
9.Improving Granulosa Cell Function in Premature Ovarian Failure with Umbilical Cord Mesenchymal Stromal Cell ExosomeDerived hsa_circ_0002021
Ge YANG ; Bo ZHANG ; Mei XU ; MingJun WU ; Jie LIN ; ZiYu LUO ; YueHua CHEN ; Qin HU ; GuoPing HUANG ; HaiYan HU
Tissue Engineering and Regenerative Medicine 2024;21(6):897-914
BACKGROUND:
The therapeutic potential of exosomes from human umbilical cord mesenchymal stem cells (HUMSCsExo) for delivering specific circular RNAs (circRNAs) in treating premature ovarian failure (POF) is not well understood.This study aimed to explore the efficacy of HUMSCs-Exo in delivering hsa_circ_0002021 for POF treatment, focusing on its effects on granulosa cell (GC) senescence and ovarian function.
METHODS:
Bioinformatic analysis was conducted on circRNA profiles using the GSE97193 dataset from GEO, targeting granulosa cells from varied age groups. To simulate granulosa cell senescence, KGN cells were treated with cyclophosphamide (CTX). HUMSCs were transfected with pcDNA 3.1 vectors to overexpress hsa_circ_0002021, and the HUMSCsExo secreted were isolated. These exosomes were characterized by transmission electron microscopy (TEM) and Western blotting to confirm exosomal markers CD9 and CD63. Co-culture of these exosomes with CTX-treated KGN cells was performed to assess b-galactosidase activity, oxidative stress markers, ROS levels, and apoptosis via flow cytometry.Interaction between hsa_circ_0002021, microRNA-125a-5p (miR-125a-5p), and cyclin-dependent kinase 6 (CDK6) was investigated using dual-luciferase assays and RNA immunoprecipitation (RIP). A POF mouse model was induced with CTX, treated with HUMSCs-Exo, and analyzed histologically and via immunofluorescence staining. Gene expression was quantified using RT-qPCR and Western blot.
RESULTS:
hsa_circ_0002021 was under expressed in both in vivo and in vitro POF models and was effectively delivered by HUMSCs-Exo to KGN cells, showing a capability to reduce GC senescence. Overexpression of hsa_circ_0002021 in HUMSCs-Exo significantly enhanced these anti-senescence effects. This circRNA acts as a competitive adsorbent of miR-125a-5p, regulating CDK6 expression, which is crucial in modulating cell cycle and apoptosis. Enhanced expression of hsa_circ_0002021 in HUMSCs-Exo ameliorated GC senescence in vitro and improved ovarian function in POF models by modulating oxidative stress and cellular senescence markers.
CONCLUSION
This study confirms that hsa_circ_0002021, when delivered through HUMSCs-Exo, can significantly mitigate GC senescence and restore ovarian function in POF models. These findings provide new insights into the molecular mechanisms of POF and highlight the therapeutic potential of circRNA-enriched exosomes in treating ovarian aging and dysfunction.
10.A consensus on the management of allergy in kindergartens and primary schools
Chinese Journal of School Health 2023;44(2):167-172
Abstract
Allergic diseases can occur in all systems of the body, covering the whole life cycle, from children to adults and to old age, can be lifelong onset and even fatal in severe cases. Children account for the largest proportion of the victims of allergic disease, Children s allergies start from scratch, ranging from mild to severe, from less to more, from single to multiple systems and systemic performance, so the prevention and treatment of allergic diseases in children is of great importance, which can not only prevent high risk allergic conditions from developing into allergic diseases, but also further block the process of allergy. At present, there is no consensus on the management system of allergic children in kindergartens and primary schools. The "Consensus on Allergy Management and Prevention in Kindergartens and Primary Schools", which includes the organizational structure, system construction and management of allergic children, provides evidence informed recommendations for the long term comprehensive management of allergic children in kindergartens and primary schools, and provides a basis for the establishment of the prevention system for allergic children.


Result Analysis
Print
Save
E-mail