1.Analysis of physical fitness test results for freshmen with different nutritional status at Civil Aviation University of China from 2014 to 2024
SHEN Shunfa, PENG Ziye, CHEN Xuedong, LI Huichao, ZHAO Kun, PEI Zhengcun
Chinese Journal of School Health 2025;46(6):857-862
Objective:
To analyze the status and trends of physical fitness test data among college freshmen with different body mass index (BMI) groups from 2014 to 2024, providing the scientific evidence for monitoring and intervening in college students physical health.
Methods:
A census was conducted on all 67 949 freshmen at Civil Aviation University of China from 2014 to 2024. Physical tests included vital capacity, sit and reach, sit ups, 50 m sprint, standing long jump, pull ups, and 800 m/1 000 m run. Freshmen were divided into underweight, normal weight, overweight and obese groups according to WHO BMI standards. The Kruskal-Wallis H test was used to compare differences in physical fitness indicators across gender and BMI groups, while the Mann-Kendall trend test was employed to detect upward or downward trends in physical indicators over time.
Results:
From 2014 to 2024, statistically significant differences were observed in vital capacity, 50 m sprint, standing long jump, and sit and reach among different BMI groups for both genders (boy: Z =2 396.40, 4 160.33, 4 662.23, 531.85; girl: Z =593.37, 308.86, 499.37, 128.70). Significant differences were also found in 1 000 m run and pull ups for boys, and 800 m run and sit ups for girls across BMI groups (boy: Z =6 574.80, 6 880.48; girl: Z =528.56, 146.18) ( P <0.01). Overall physical test scores showed a declining trend during 2014-2024, particularly pronounced in overweight and obese groups. Male vital capacity in 2014 exceeded national survey data( d =320 mL), with the gap widening to 734 mL by 2019, while the female vital capacity difference increased from 271 mL in 2014 to 576 mL in 2019. Male 1 000 m run times were 23.0 s and 17.5 s faster than national data in 2014 and 2019 respectively, while female 800 m run times were 22.3 s and 21.5 s faster than corresponding national data.
Conclusions
Physical health status among freshmen at this university varies across BMI groups and changes over time. Although overall test scores remain higher than national levels, the declining trend in physical fitness performance requires attention.
2.Research progress in the role of STMN1 in tumor.
Xingxing MA ; Muzi LI ; La CHEN ; Huijuan MEI ; Ziye RONG
Journal of Central South University(Medical Sciences) 2025;50(6):1052-1059
Stathmin 1 (STMN1) is a microtubule-binding cytoplasmic phosphoprotein that promotes microtubule depolymerization or inhibits microtubule assembly, thereby regulating cytoskeletal organization and cell cycle progression. STMN1 is upregulated in a variety of malignant tumors, where it drives proliferation, invasion, metastasis, and angiogenesis through classic pathways such as nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and ferroptosis. STMN1 can also modulate the function of immune cells, thereby influencing antitumor immunity. Clinical data show that its high expression correlates positively with tumor drug resistance and poor prognosis, suggesting that STMN1 has potential as a tumor biomarker and therapeutic molecular target with important clinical significance.
Humans
;
Stathmin/metabolism*
;
Neoplasms/genetics*
;
Biomarkers, Tumor/metabolism*
;
NF-kappa B/metabolism*
;
Cell Proliferation
;
Drug Resistance, Neoplasm
3.High-throughput single-microbe RNA sequencing reveals adaptive state heterogeneity and host-phage activity associations in human gut microbiome.
Yifei SHEN ; Qinghong QIAN ; Liguo DING ; Wenxin QU ; Tianyu ZHANG ; Mengdi SONG ; Yingjuan HUANG ; Mengting WANG ; Ziye XU ; Jiaye CHEN ; Ling DONG ; Hongyu CHEN ; Enhui SHEN ; Shufa ZHENG ; Yu CHEN ; Jiong LIU ; Longjiang FAN ; Yongcheng WANG
Protein & Cell 2025;16(3):211-226
Microbial communities such as those residing in the human gut are highly diverse and complex, and many with important implications for health and diseases. The effects and functions of these microbial communities are determined not only by their species compositions and diversities but also by the dynamic intra- and inter-cellular states at the transcriptional level. Powerful and scalable technologies capable of acquiring single-microbe-resolution RNA sequencing information in order to achieve a comprehensive understanding of complex microbial communities together with their hosts are therefore utterly needed. Here we report the development and utilization of a droplet-based smRNA-seq (single-microbe RNA sequencing) method capable of identifying large species varieties in human samples, which we name smRandom-seq2. Together with a triple-module computational pipeline designed for the bacteria and bacteriophage sequencing data by smRandom-seq2 in four human gut samples, we established a single-cell level bacterial transcriptional landscape of human gut microbiome, which included 29,742 single microbes and 329 unique species. Distinct adaptive response states among species in Prevotella and Roseburia genera and intrinsic adaptive strategy heterogeneity in Phascolarctobacterium succinatutens were uncovered. Additionally, we identified hundreds of novel host-phage transcriptional activity associations in the human gut microbiome. Our results indicated that smRandom-seq2 is a high-throughput and high-resolution smRNA-seq technique that is highly adaptable to complex microbial communities in real-world situations and promises new perspectives in the understanding of human microbiomes.
Humans
;
Gastrointestinal Microbiome/genetics*
;
Bacteriophages/physiology*
;
High-Throughput Nucleotide Sequencing
;
Sequence Analysis, RNA/methods*
;
Bacteria/virology*
4.The influence of knocking down the expression of low-density lipoprotein receptor associated proteins on the vascular abnormalities in hepatocellular carcinoma and its mechanisms
Qiang WU ; Linlin ZHAN ; Yu WANG ; Yuchao HE ; Lu CHEN ; Ziye CHEN ; Guangtao LI ; Dongming LIU ; Xu BAO ; Xiaomeng LIU ; Hua GUO ; Tianqiang SONG
Chinese Journal of Oncology 2024;46(5):399-408
Objectives:To investigate the effect of the expression of low-density lipoprotein receptor associated protein (LDLR) on the vascular abnormalities in hepatocellular carcinoma (HCC) and its mechanisms.Methods:Based on the information of Oncomine Cancer GeneChip database, we analyzed the correlation between the expression level of LDLR and the expression level of carcinoembryonic antigen (CEA) and CD31 in hepatocellular carcinoma tissues. Lentiviral transfection of short hairpin RNA target genes was used to construct LDLR-knockdown MHCC-97H and HLE hepatocellular carcinoma cells. The differential genes and their expression level changes in LDLR-knockdown hepatocellular carcinoma cells were detected by transcriptome sequencing, real-time fluorescence quantitative polymerase chain reaction, and protein immunoblotting. The gene-related signaling pathways that involve LDLR were clarified by enrichment analysis. The effect of LDLR on CEA was assessed by the detection of CEA content in conditioned medium of hepatocellular carcinoma cells. Angiogenesis assay was used to detect the effect of LDLR on the angiogenic capacity of human umbilical vein endothelial cells, as well as the role of CEA in the regulation of angiogenesis by LDLR. Immunohistochemical staining was used to detect the expression levels of LDLR in 176 hepatocellular carcinoma tissues, and CEA and CD31 in 146 hepatocellular carcinoma tissues, and analyze the correlations between the expression levels of LDLR, CEA, and CD31 in the tissues, serum CEA, and alanine transaminase (ALT).Results:Oncomine database analysis showed that the expressions of LDLR and CEA in the tissues of hepatocellular carcinoma patients with portal vein metastasis were negatively correlated ( r=-0.64, P=0.001), whereas the expressions of CEA and CD31 in these tissues were positively correlated ( r=0.46, P=0.010). The transcriptome sequencing results showed that there were a total of 1 032 differentially expressed genes in the LDLR-knockdown group and the control group of MHCC-97H cells, of which 517 genes were up-regulated and 515 genes were down-regulated. The transcript expression level of CEACAM5 was significantly up-regulated in the cells of the LDLR-knockdown group. The Gene Ontology (GO) function enrichment analysis showed that the differential genes were most obviously enriched in the angiogenesis function. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis showed that the relevant pathways involved mainly included the cellular adhesion patch, the extracellular matrix receptor interactions, and the interactions with the extracellular matrix receptors. The CEA content in the conditioned medium of the LDLR-knockdown group was 43.75±8.43, which was higher than that of the control group (1.15±0.14, P<0.001). The results of angiogenesis experiments showed that at 5 h, the number of main junctions, the number of main segments, and the total area of the lattice formed by HUVEC cells cultured with the conditioned medium of MHCC-97H cells in the LDLR-knockdown group were 295.3±26.4, 552.5±63.8, and 2 239 781.0±13 8211.9 square pixels, which were higher than those of the control group (113.3±23.5, 194.8±36.5, and 660 621.0±280 328.3 square pixels, respectively, all P<0.01).The number of vascular major junctions, the number of major segments, and the total area of the lattice formed by HUVEC cells cultured in conditioned medium with HLE cells in the LDLR-knockdown group were 245.3±42.4, 257.5±20.4, and 2 535 754.5±249 094.2 square pixels, respectively, which were all higher than those of the control group (113.3±23.5, 114.3±12.2, and 1 565 456.5±219 259.7 square pixels, respectively, all P<0.01). In the conditioned medium for the control group of MHCC-97H cells,the number of main junctions, the number of main segments, and the total area of the lattice formed by the addition of CEA to cultured HUVEC cells were 178.9±12.0, 286.9±12.3, and 1 966 990.0±126 249.5 spixels, which were higher than those in the control group (119.7±22.1, 202.7±33.7, and 1 421 191.0±189 837.8 square pixels, respectively). The expression of LDLR in hepatocellular carcinoma tissues was not correlated with the expression of CEA, but was negatively correlated with the expression of CD31 ( r=-0.167, P=0.044), the level of serum CEA ( r=-0.061, P=0.032), and the level of serum ALT (r=-0.147, P=0.05). The expression of CEA in hepatocellular carcinoma tissues was positively correlated with the expression of CD31 ( r=0.192, P=0.020). The level of serum CEA was positively correlated with the level of serum ALT ( r=0.164, P=0.029). Conclusion:Knocking down LDLR can promote vascular abnormalities in HCC by releasing CEA.
5.Significance of changes in levels of neutrophil extracellular traps during development of silicosis in mice
Lu HAN ; Ruru CHEN ; Yulu XIONG ; Ziye GUO ; Hailan HE ; Xiaohui HAO ; Heliang LIU ; Lingli GUO
Journal of Environmental and Occupational Medicine 2024;41(12):1422-1427
Background Silicosis is an occupational disease mainly characterized by pulmonary progressive fibrosis induced by the accumulation of free silica (SiO2) in the lungs due to long-term exposure to SiO2 dust. It has been shown that neutrophil extracellular traps (NETs) are increased in the lung tissues of silicotic mice after 28 d SiO2 exposure, but it is unclear how the levels of NETs change throughout entire progression of silicosis in mice. Objective To observe the levels of NETs and pathological changes in the lungs of silicotic mice after different duration of SiO2 exposure, and to confirm the possible role and significance of NETsin the development of SiO2-induced pulmonary fibrosis. Methods A total of 28 SPF male C57BL/6J mice were randomly divided into a control group, and a model group, and the model group was subdivided into, a 2 d model group, a 7 d model group, and a 28 d model group, with 7 mice in each group. The mice in the model groups were given intratracheal instillation with 10 mg SiO2 suspension (50 μL), and the mice in the control group were received same volume of saline. Mice were sacrificed and samples were collected at designed time points. The pathological changes of lung tissues of mice were observed after hematoxylin-eosin (HE) and Van Gieson (VG) staining. Immunofluorescence was used to observe the NETs markers citrullination histone H3 (CitH3) and myeloperoxidase (MPO) in bronchoalveolar lavage fluid (BALF), and the percentage of NETs-positive cells was calculated. PicoGreen fluorescent dye kit was used to detect the content of extracelluar DNA (ex-DNA) in mouse BALF, and the expression levels of fibrosis-related proteins α-smooth muscle actin (α-SMA) and fibronectin (FN) and NETs marker CitH3 in lung tissues of mice were detected by Western blot (WB). Results Compared with the control group, inflammatory cells accumulation, alveolar wall thickening, and collagen deposition were obviously observed in the lungs of the silicosis model groups, and a large number of silicone nodules were recorded in the lung tissues in the 28 d group. Compared with the control group, the expressions of α-SMA and FN in the lung tissue of the 28 d group were significantly increased (P<0.05). The percentages of NETs in BALF increased significantly in the 2 d and the 7 d model group, then decreased in the 28 d model group (P<0.05). Compared with the control group (7.434±0.258) ng·mL−1, the ex-DNA levels in BALF of mice in the 2 d [(35.110±6.331) ng·mL−1], the 7 d [(39.491±6.948) ng·mL−1], and the 28 d [(23.360±4.809) ng·mL−1] model groups were increased (P<0.05), and the increase of ex-DNA in the 2 d and the 7 d model groups were statistically significant (P<0.05). In comparison with the control group, the protein level of CitH3 was significantly increased in the lung tissues of mice in the 7 d model group (P<0.05). Conclusion The content of NETs increases significantly and reaches a peak in the early inflammatory stage of silicosis, and decreases as the disease progresses to the fibrotic stage, suggesting that NETs may play a role in early stage of silicosis.
6.The influence of knocking down the expression of low-density lipoprotein receptor associated proteins on the vascular abnormalities in hepatocellular carcinoma and its mechanisms
Qiang WU ; Linlin ZHAN ; Yu WANG ; Yuchao HE ; Lu CHEN ; Ziye CHEN ; Guangtao LI ; Dongming LIU ; Xu BAO ; Xiaomeng LIU ; Hua GUO ; Tianqiang SONG
Chinese Journal of Oncology 2024;46(5):399-408
Objectives:To investigate the effect of the expression of low-density lipoprotein receptor associated protein (LDLR) on the vascular abnormalities in hepatocellular carcinoma (HCC) and its mechanisms.Methods:Based on the information of Oncomine Cancer GeneChip database, we analyzed the correlation between the expression level of LDLR and the expression level of carcinoembryonic antigen (CEA) and CD31 in hepatocellular carcinoma tissues. Lentiviral transfection of short hairpin RNA target genes was used to construct LDLR-knockdown MHCC-97H and HLE hepatocellular carcinoma cells. The differential genes and their expression level changes in LDLR-knockdown hepatocellular carcinoma cells were detected by transcriptome sequencing, real-time fluorescence quantitative polymerase chain reaction, and protein immunoblotting. The gene-related signaling pathways that involve LDLR were clarified by enrichment analysis. The effect of LDLR on CEA was assessed by the detection of CEA content in conditioned medium of hepatocellular carcinoma cells. Angiogenesis assay was used to detect the effect of LDLR on the angiogenic capacity of human umbilical vein endothelial cells, as well as the role of CEA in the regulation of angiogenesis by LDLR. Immunohistochemical staining was used to detect the expression levels of LDLR in 176 hepatocellular carcinoma tissues, and CEA and CD31 in 146 hepatocellular carcinoma tissues, and analyze the correlations between the expression levels of LDLR, CEA, and CD31 in the tissues, serum CEA, and alanine transaminase (ALT).Results:Oncomine database analysis showed that the expressions of LDLR and CEA in the tissues of hepatocellular carcinoma patients with portal vein metastasis were negatively correlated ( r=-0.64, P=0.001), whereas the expressions of CEA and CD31 in these tissues were positively correlated ( r=0.46, P=0.010). The transcriptome sequencing results showed that there were a total of 1 032 differentially expressed genes in the LDLR-knockdown group and the control group of MHCC-97H cells, of which 517 genes were up-regulated and 515 genes were down-regulated. The transcript expression level of CEACAM5 was significantly up-regulated in the cells of the LDLR-knockdown group. The Gene Ontology (GO) function enrichment analysis showed that the differential genes were most obviously enriched in the angiogenesis function. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis showed that the relevant pathways involved mainly included the cellular adhesion patch, the extracellular matrix receptor interactions, and the interactions with the extracellular matrix receptors. The CEA content in the conditioned medium of the LDLR-knockdown group was 43.75±8.43, which was higher than that of the control group (1.15±0.14, P<0.001). The results of angiogenesis experiments showed that at 5 h, the number of main junctions, the number of main segments, and the total area of the lattice formed by HUVEC cells cultured with the conditioned medium of MHCC-97H cells in the LDLR-knockdown group were 295.3±26.4, 552.5±63.8, and 2 239 781.0±13 8211.9 square pixels, which were higher than those of the control group (113.3±23.5, 194.8±36.5, and 660 621.0±280 328.3 square pixels, respectively, all P<0.01).The number of vascular major junctions, the number of major segments, and the total area of the lattice formed by HUVEC cells cultured in conditioned medium with HLE cells in the LDLR-knockdown group were 245.3±42.4, 257.5±20.4, and 2 535 754.5±249 094.2 square pixels, respectively, which were all higher than those of the control group (113.3±23.5, 114.3±12.2, and 1 565 456.5±219 259.7 square pixels, respectively, all P<0.01). In the conditioned medium for the control group of MHCC-97H cells,the number of main junctions, the number of main segments, and the total area of the lattice formed by the addition of CEA to cultured HUVEC cells were 178.9±12.0, 286.9±12.3, and 1 966 990.0±126 249.5 spixels, which were higher than those in the control group (119.7±22.1, 202.7±33.7, and 1 421 191.0±189 837.8 square pixels, respectively). The expression of LDLR in hepatocellular carcinoma tissues was not correlated with the expression of CEA, but was negatively correlated with the expression of CD31 ( r=-0.167, P=0.044), the level of serum CEA ( r=-0.061, P=0.032), and the level of serum ALT (r=-0.147, P=0.05). The expression of CEA in hepatocellular carcinoma tissues was positively correlated with the expression of CD31 ( r=0.192, P=0.020). The level of serum CEA was positively correlated with the level of serum ALT ( r=0.164, P=0.029). Conclusion:Knocking down LDLR can promote vascular abnormalities in HCC by releasing CEA.
7.Automated identification and localization of inferior vena cava based on ultrasound images
Jinghan YANG ; Ziye CHEN ; Jingyuan SUN ; Wen CAO ; Chaoyang LÜ ; Shuo LI ; Mingqiu LI ; Pu ZHANG ; Jingzhou XU ; Chang ZHOU ; Yuxiang YANG ; Fu ZHANG ; Qingli LI ; Ruijun GUO ; Jiangang CHEN
Academic Journal of Naval Medical University 2024;45(9):1107-1112
Objective To explore the automated identification and diameter measurement methods for inferior vena cava (IVC) based on clinical ultrasound images of IVC. Methods An automated identification and localization method based on topology and automatic tracking algorithm was proposed. Tracking algorithm was used for identifying and continuously locating to improve the efficiency and accuracy of measurement. Tests were conducted on 18 sets of ultrasound data collected from 18 patients in intensive care unit (ICU),with clinicians' measurements as the gold standard. Results The recognition accuracy of the automated method was 94.44% (17/18),and the measurement error of IVC diameter was within the range of±1.96s (s was the standard deviation). The automated method could replace the manual method. Conclusion The proposed IVC automated identification and localization algorithm based on topology and automatic tracking algorithm has high recognition success rate and IVC diameter measurement accuracy. It can assist clinicians in identifying and locating IVC,so as to improve the accuracy of IVC measurement.
8.Analysis of differentially expressed genes during the differentiation of human induced pluripotent stem cells and embryonic stem cells into pericytes and endothelial cells
Jizhu LI ; Yuan MA ; Baoyi LIU ; Yaping LIU ; Ziye CHEN ; Tao LI
Chinese Journal of Ocular Fundus Diseases 2024;40(11):869-877
Objective:To study the differentially expressed genes (DEG) during the differentiation of human induced pluripotent stem cells (hiPSC) and human embryonic stem cells (hESC) into pericytes and endothelial cells, and to identify key molecules and signaling pathways that may regulate this differentiation process.Methods:hiPSC and hESC were selected and expanded using mTeSR medium. A "two-step method" was used to induce the differentiation of hiPSC and hESC into pericytes and endothelial cells. Pericytes were identified using immunofluorescence staining, while endothelial cells were isolated and identified using flow cytometry. Total RNA samples were extracted on days 0, 4, 7, and 10 of differentiation and consistently significant DEGs were screened. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis were performed on the screened DEGs.Results:Both hiPSCs and hESCs successfully differentiated into pericytes and endothelial cells under induction conditions. Transcriptome sequencing results showed that with the extension of differentiation time, the DEGs in hiPSCs and hESCs were significantly upregulated or downregulated, following a generally consistent trend. During the differentiation process, marker genes for pericytes and endothelial cells were significantly upregulated. A total of 491 persistent DEGs were detected in both hiPSC and hESC, with 164 unique to hiPSCs and 335 to hESCs, while 8 DEGs were co-expressed in both cell lines. Among these, SLC30A3, LCK, TNFRSF8, PRDM14, and GLB1L3 showed sustained downregulation, whereas CLEC18C, CLEC18B, and F2RL2 exhibited sustained upregulation. GO enrichment analysis revealed that DEGs with sustained upregulation were primarily enriched in terms related to neurogenesis, differentiation, and developmental proteins, while DEGs with sustained downregulation were enriched in terms related to membrane structure and phospholipid metabolic processes. KEGG pathway analysis showed that upregulated genes were primarily enriched in cancer-related pathways, pluripotency regulatory pathways, the Wnt signaling pathway, and the Hippo signaling pathway, whereas downregulated genes were predominantly enriched in metabolism-related pathways. Conclusions:During the differentiation of hiPSC and hESC into pericytes and endothelial cells, 8 DEGs exhibit sustained specific expression changes. These changes may promote pericyte and endothelial cell differentiation by activating the Wnt and Hippo pathways, inhibiting metabolic pathways, releasing the maintenance of stem cell pluripotency, affecting the cell cycle, and inhibiting cell proliferation.
9.Preliminary study on thyroid ultrasound image restoration algorithm based on deep learning
Min ZHANG ; Chiming NI ; Jiaheng WEN ; Ziye DENG ; Haishan XU ; Haiya LOU ; Mei PAN ; Qiang LI ; Ling ZHOU ; Chuanju ZHANG ; Yu LING ; Jiaoni WANG ; Juanping CHEN ; Gaoang WANG ; Shiyan LI
Chinese Journal of Ultrasonography 2023;32(6):515-522
Objective:To explore the feasibility of deep learning-based restoration of obscured thyroid ultrasound images.Methods:A total of 358 images of thyroid nodules were retropectively collected from January 2020 to October 2021 at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and the images were randomly masked and restored using DeepFillv2. The difference in grey values between the images before and after restoration was compared, and 6 sonographers (2 chief physicians, 2 attending physicians, 2 residents) were invited to compare the rate of correctness of judgement and detection of image discrepancies. The ultrasound features of thyroid nodules (solid composition, microcalcifications, markedly hypoechoic, ill-defined or irregular margins, or extrathyroidal extensions, vertical orientation and comet-tail artifact) were extracted according to the Chinese Thyroid Imaging Reporting and Data System (C-TIRADS). The consistency of ultrasound features of thyroid nodules before and after restoration were compared.Results:The mean squared error of the images before and after restoration ranged from 0.274 to 0.522, and there were significant differences in the rate of correctness of judgement and detection of image discrepancies between physicians of different groups(all P<0.001). The overall accuracy rate was 51.95%, the overall detection rate was 1.79%, there were significant differences also within the chief physicians and resident groups (all P<0.001). The agreement rate of all ultrasound features of the nodules before and after image restoration was higher than 70%, over 90% agreement rate for features such as solid composition and comet-tail artifact. Conclusions:The algorithm can effectively repair obscured thyroid ultrasound images while preserving image features, which is expected to expand the deep learning image database, and promote the development of deep learning in the field of ultrasound images.
10.Effect of Euphorbia helioscopia Aqueous Extract on Chronic Obstructive Pulmonary Disease and Precancerous Lesion-associated Proteins of Lung Tissues in Mice Induced by Cigarette Smoke
Ziye ZHOU ; Huimiao MA ; Lanying CHEN ; Wenbin DUAN ; Lihua LIN ; Peng LIU
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(7):84-94
ObjectiveTo investigate the protective effect and mechanism of Euphorbia helioscopia aqueous extract (EHE) on mice with chronic obstructive pulmonary disease (COPD) and its influence on precancerous lesion-associated proteins in lung tissues induced by cigarette smoke (CS). MethodThe COPD model was induced by CS in 60 mice and the model mice were randomly divided into control group, model group, positive drug group (dexamethasone, 2 mg·kg-1), and low-, medium-, and high-dose EHE groups (1.875, 3.75, 7.5 g·kg-1). The high-performance liquid chromatography (HPLC) method was used to determine the related components in EHE. The changes in end-expiratory pause (EEP), airway resistance (Penh), expiratory flow at 50% vital capacity (EF50), and other pulmonary function indexes were detected by the spirometer. The levels of inflammatory factors, such as interleukin (IL)-2, IL-5, IL-18, IL-17A, and IL-27 in bronchoalveolar lavage fluid (BALF) of mice were detected by high-throughput liquid protein chip technology. Hematoxylin-eosin (HE) staining was used to detect the pathological changes in lung tissues in mice. The content of malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione peroxidase (GSH-Px) in lung tissues was determined by the colorimetric method. The mRNA relative expression of tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and matrix metalloproteinase-12 (MMP-12) was detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). Immunohistochemistry (IHC) was used to detect the expression of tumor protein (P53) and cell proliferation-associated antigen (Ki67) in lung tissues, and Western blot was used to detect the relative expression of tumor suppressor protein (P16), DNA (cytosine-5)-methyltransferase 1 (DNMT1), and fragile histidine triad (FHIT) in lung tissues. ResultThe results showed that the main compounds in EHE included phenols (gallic acid and protocatechuic acid) and flavonoids (such as hyperoside, rutin, myricetin, naringenin, quercetin, luteolin, kaempferol, and licorice chalcone A), among which gallic acid and rutin were the highest in content. Compared with normal group, model group showed increased levels of EEP, EF50, and Penh (P<0.05), and showed increased MDA and MPO levels (P<0.01) and decreased GSH-Px (P<0.01), and the model group displayed increased levels of IL-2, IL-5, IL-18, IL-17A, IL-27, TNF-α, TGF-β, MMP-2, MMP-9, and MMP-12 (P<0.05). And the model group exhibited up-regulated expression of P53, Ki67, and FHIT in lung tissues (P<0.01) and down-regulated expression of DNMT1 and P16 (P<0.01). Compared with model group, the EHE groups showed decreased EEP and EF50 levels (P<0.05). The pathological injury of lung tissues in mice of the model group was observed under HE staining, and the pathological injury of basal cell hyperplasia of lung tissues was gradually improved after treatment with EHE. The EHE groups showed reduced levels of MDA and MPO (P<0.01) and increased GSH-Px (P<0.01). The EHE groups displayed decreased levels of IL-2, IL-5, IL-18, IL-17A, IL-27, TNF-α, TGF-β, MMP-2, MMP-9, and MMP-12 (P<0.05). And the EHE groups showed down-regulated Ki67 and FHIT in lung tissues (P<0.05) and up-regulated expression of P53 and DNMT1 (P<0.05). ConclusionEHE can protect mice from COPD and inhibit precancerous lesions, and the mechanism may be related to the inhibition of inflammation and oxidative stress response, regulation of protease and antiprotease imbalance, and regulation of epithelial cell growth.


Result Analysis
Print
Save
E-mail