1.Comparative analysis of characteristics and functions of exosomes from human induced pluripotent stem cell-derived platelets and apheresis platelets
Weihua HUANG ; Yan ZANG ; Aihua QIN ; Ziyang FENG ; Heshan TANG ; Fei GUO ; Chuyan WU ; Qiu SHEN ; Baohua QIAN ; Haihui GU ; Zhanshan CHA
Chinese Journal of Blood Transfusion 2025;38(9):1154-1161
Objective: To compare the biological characteristics of human induced pluripotent stem cell-derived platelet exosomes (hiPSC-Plt-Exos) with those of conventional apheresis platelet exosomes (Plt-Exos), specifically focusing on their differential abilities to enhance the proliferation and migration of human umbilical cord mesenchymal stem cells (hUC-MSCs). Methods: Exosomes were isolated from hiPSC-derived Plt and apheresis Plt concentrate using size exclusion chromatography. These exosomes were then characterized through nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. Co-culture experiments into hUC-MSCs were conducted with hiPSC-Plt-Exos and apheresis Plt-Exos, respectively. Their effects on the proliferation and migration of hUC-MSCs were assessed via cell proliferation assays and scratch tests. Results: hiPSC-Plt-Exos and apheresis Plt-Exos exhibited comparable particle sizes, morphological features (such as the characteristic cup-shaped structure), and surface markers (including CD9 and HSP70). Notably, hiPSC-Plt-Exos demonstrated a significantly greater ability to enhance the proliferation and migration of hUC-MSCs compared to apheresis Plt-Exos (P<0.05). These differences provide critical comparative data for their application in various clinical contexts. Conclusion: This study establishes a theoretical foundation for developing precise therapeutic strategies based on hiPSC-Plt-Exos. Furthermore, it underscores the necessity of selecting the appropriate type of exosomes according to the specific disease microenvironment to achieve optimal therapeutic outcomes.
2.Research progress of platelet function in immune regulation: from basic to clinical
Weihua HUANG ; Qiu SHEN ; Heshan TANG ; Ziyang FENG ; Min YE ; He ZHANG ; Ying LIU ; Baohua QIAN ; Zhanshan CHA
Chinese Journal of Blood Transfusion 2025;38(11):1592-1601
Traditionally, platelets, which are anucleate cell fragments derived from blood cells, have been primarily associated with their pivotal functions in hemostasis and thrombosis. However, recent research has elucidated their significant role in immune regulation, highlighting their expression of various immune receptors, involvement in numerous immune-related signaling pathways, and activation of diverse effector functions. This paper elaborates on the fundamental biological characteristics and immune functions of platelets, the involvement of activated platelets in immune regulation, and their prospective applications in clinical therapy. Furthermore, the paper discusses future directions in platelet immune research, as well as the prospects and developmental trends in immunotherapy, aiming to furnish a thorough reference for the investigation and clinical utilization of platelets within the domain of immune regulation.
3.Safety and efficacy of mitomycin nanoparticles in inhibiting scar proliferation after glaucoma filtration surgery
Ying LI ; Juan TANG ; Changfen LI ; Qilin FANG ; Xingde LIU ; Dan ZHANG ; Tingting ZHANG ; Xiaoli WU ; Tao LI
International Eye Science 2024;24(11):1708-1714
AIM: To prepare a nanodrug MMC-ATS-@PLGA using polylactic acid hydroxyacetic acid copolymer(PLGA)as a carrier and mitomycin C(MMC)loaded on PLGA, and to analyse the biological safety and treatment effect of this nanodrug on inhibiting the proliferation of filtering bleb scarring after glaucoma surgery in vivo.METHODS: The thin-film dispersion hydration ultrasonic method was used to prepare the MMC-ATS-@PLGA, and its physical and chemical properties were detected. The effect of MMC-ATS@PLGA on rabbit corneas was analysed through corneal fluorescence staining and HE staining, and tear film rupture time(BUT), Schirmer test and intraocular pressure data were collected to analyse ocular surface biosafety. A slit lamp was used to observe and calculate the filtration bubble size, and the tissue morphological changes were analysed by conjunctival HE staining. In addition, immunohistochemistry and Elisa were used to compare the anti-inflammatory effects of Flumiolone Eye Drops(FML), MMC, and MMC-ATS-@PLGA nanoparticles on inhibiting the formation of filtering bleb scarring after glaucoma surgery from multiple perspectives via comparative proteomic analysis.RESULTS: The average particle size and zeta potential of MMC-ATS-@PLGA were 128.78±2.54 nm and 36.49±4.25 mV, respectively, with an encapsulation efficiency and a drug loading rate of(78.49±2.75)% and(30.86±1.84)%, respectively. At 33°C(the ocular surface temperature), the cumulative release rate of the MMC-ATS-@PLGA nanoparticles reached(76.58±2.68)% after 600 min. Moreover, corneal fluorescence staining, HE, BUT, Schirmer, and intraocular pressure results showed that MMC-ATS-@PLGA had good biocompatibility with the ocular surface of rabbits. At 3 wk after surgery, the area of filtering blebs in the MMC-ATS-@PLGA group was significantly larger than that in the FML group and MMC group, and the filtering blebs in the control group had basically disappeared. Pathological tissue analysis of the conjunctiva in the filtering blebs area of the eyes of the rabbits revealed that compared with that in the normal group, the morphology of the collagen fibres in the MMC-ATS-@PLGA group was relatively regular, the fibres were arranged neatly, and the tissue morphology was similar to that of the normal group. Immunohistochemistry and Elisa confirmed that compared with those in the normal group, the expression levels of α-SMA, CTGF, and type Ⅲ collagen fibre antibodies were significantly increased in the control group. After FML, MMC, or MMC-ATS-@PLGA treatment for 3 wk, the expression of inflammatory factors gradually decreased. Among the groups, the MMC-ATS-@PLGA group showed the most significant decrease(P<0.05).CONCLUSION: This study successfully synthesized a nanomedicine(MMC-ATS-@PLGA)that inhibits scar proliferation after glaucoma filtration surgery. The drug had stable physicochemical properties, good biocompatibility, and better anti-inflammatory effects by inhibiting the expression of α-SMA, CTGF, and type Ⅲ collagen fibres, which can prevent the formation of scarring in the filtering blebs area, thereby improving the success rate of glaucoma filtering surgery.
4.Prediction value of hounsfield units at upper instrumented vertebra for postoperative proximal junctional kyphosis after pelvic fixation with second sacralalar-iliac in patients with degenerative spinal deformity
Xing SUN ; Jie LI ; Yanjie XU ; Zongshan HU ; Ziyang TANG ; Hui XU ; Zhen LIU ; Yong QIU ; Zezhang ZHU
Chinese Journal of Orthopaedics 2024;44(11):730-739
Objective:To investigate the effect of Hounsfield Units (HU) at the upper instrumented vertebra (UIV) on postoperative proximal junctional kyphosis (PJK) after pelvic fixation with second sacral alar-iliac (S 2AI) screws in patients with degenerative spinal deformity. Methods:A total of 66 patients with degenerative spinal deformity who underwent pelvic fixation with S 2AI screws from August 2015 to April 2021 were retrospectively reviewed. The cohort included 4 males and 62 females, aged 61.9±7.3 years (range, 43-78 years), with a follow-up period of 18.4±14.3 months (range, 6-60 months). The prevalence of PJK was 26%. Patients were divided into two groups based on the occurrence of PJK during postoperative follow-up: the PJK group (17 cases) and the non-PJK group (49 cases). HU measurements were taken at the UIV, the vertebral body cephalad to the UIV (UIV+1), and the L 3 and L 4 vertebral bodies. The following sagittal radiographic parameters were measured: thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI), PI minus LL (PI-LL), and sagittal vertical axis (SVA) at preoperative, postoperative, and final follow-up. General information and HU values of the two groups were compared, and Pearson correlation analysis was performed on HU values, bone mineral density (BMD), and T scores. Logistic regression analysis was used to explore the risk factors for PJK. Results:The HU values of L 3 and L 4 were significantly positively correlated with the BMD and T scores respectively ( r=0.530, P<0.001; r=0.537, P<0.001). Age, gender, follow-up time, fixation levels, bone mineral density (BMD) and T-score were not significantly different between PJK and non-PJK group. The average HU values of UIV and UIV+1 in PJK group was 104.3±32.9, whlie the average HU values of UIV and UIV+1 in non-PJK group was 133.7±29.5. The difference of HU between the two groups was statistically significant ( t=3.441, P=0.001). Logistic regression analysis showed that average HU values of UIV and UIV+1 [ OR=0.960, 95% CI(0.933, 0.987), P=0.004] and changes of lumbar lordosis [ OR=1.049, 95% CI(1.007, 1.092), P=0.023] were independent risk factors for PJK, with an optimal cutoff obtained by ROC that 106 for average HU values of UIV and UIV+1 and 22.5° for changes of LL. Conclusion:The average HU values of UIV and UIV+1 < 106 and changes of lumbar lordosis > 22.5° are independent risk factors for PJK after pelvic fixation with second sacralalar-iliac in patients with degenerative spinal deformity.
5.The Role of Spinal Cord Compression in Predicting Intraoperative Neurophysiological Monitoring Events in Patients With Kyphotic Deformity: A Magnetic Resonance Imaging-Based Study
Zhen JIN ; Jie LI ; Hui XU ; Zongshan HU ; Yanjie XU ; Ziyang TANG ; Yong QIU ; Zhen LIU ; Zezhang ZHU
Neurospine 2024;21(2):701-711
Objective:
To establish a novel classification system for predicting the risk of intraoperative neurophysiological monitoring (IONM) events in surgically-treated patients with kyphotic deformity.
Methods:
Patients with kyphotic deformity who underwent surgical correction of cervicothoracic, thoracic, or thoracolumbar kyphosis in our center from July 2005 to December 2020 were recruited. We proposed a classification system to describe the morphology of the spinal cord on T2-weighted sagittal magnetic resonance imaging: type A, circular/symmetric cord with visible cerebrospinal fluid (CSF) between the cord and vertebral body; type B, circular/oval/symmetric cord with no visible CSF between the cord and vertebral body; type C, spinal cord that is fattened/deformed by the vertebral body, with no visible CSF between the cord and vertebral body. Furthermore, based on type C, the spinal cord compression ratio (CR) < 50% was defined as the subtype C-, while the spinal cord CR ≥ 50% was defined as the subtype C+. IONM event was documented, and a comparative analysis was made to evaluate the prevalence of IONM events among patients with diverse spinal cord types.
Results:
A total of 294 patients were reviewed, including 73 in type A; 153 in type B; 53 in subtype C- and 15 in subtype C+. Lower extremity transcranial motor-evoked potentials and/or somatosensory evoked potentials were lost intraoperatively in 41 cases (13.9%), among which 4 patients with type C showed no return of spinal cord monitoring data. The 14 subtype C+ patients (93.3%) had IONM events. Univariate logistic regression analysis showed that patients with a type C spinal cord (subtype C-: odds ratio [OR], 10.390; 95% confidence interval [CI], 2.215–48.735; p = 0.003; subtype C+, OR, 497.000; 95% CI, 42.126– 5,863.611; p < 0.001) are at significantly higher risk of a positive IONM event during deformity correction compared to those with a type A. In further multiple logistic regression analysis, the spinal cord classification (OR, 5.371; 95% CI, 2.966–9.727; p < 0.001) was confirmed as an independent risk factor for IONM events.
Conclusion
We presented a new spinal cord classification system based on the relative position of the spinal cord and vertebrae to predict the risk of IONM events in patients with kyphotic deformity. In patients with type C spinal cord, especially those in C+ cases, it is essential to be aware of potential IONM events, and adopt standard operating procedures to facilitate neurological recovery.
6.The Role of Spinal Cord Compression in Predicting Intraoperative Neurophysiological Monitoring Events in Patients With Kyphotic Deformity: A Magnetic Resonance Imaging-Based Study
Zhen JIN ; Jie LI ; Hui XU ; Zongshan HU ; Yanjie XU ; Ziyang TANG ; Yong QIU ; Zhen LIU ; Zezhang ZHU
Neurospine 2024;21(2):701-711
Objective:
To establish a novel classification system for predicting the risk of intraoperative neurophysiological monitoring (IONM) events in surgically-treated patients with kyphotic deformity.
Methods:
Patients with kyphotic deformity who underwent surgical correction of cervicothoracic, thoracic, or thoracolumbar kyphosis in our center from July 2005 to December 2020 were recruited. We proposed a classification system to describe the morphology of the spinal cord on T2-weighted sagittal magnetic resonance imaging: type A, circular/symmetric cord with visible cerebrospinal fluid (CSF) between the cord and vertebral body; type B, circular/oval/symmetric cord with no visible CSF between the cord and vertebral body; type C, spinal cord that is fattened/deformed by the vertebral body, with no visible CSF between the cord and vertebral body. Furthermore, based on type C, the spinal cord compression ratio (CR) < 50% was defined as the subtype C-, while the spinal cord CR ≥ 50% was defined as the subtype C+. IONM event was documented, and a comparative analysis was made to evaluate the prevalence of IONM events among patients with diverse spinal cord types.
Results:
A total of 294 patients were reviewed, including 73 in type A; 153 in type B; 53 in subtype C- and 15 in subtype C+. Lower extremity transcranial motor-evoked potentials and/or somatosensory evoked potentials were lost intraoperatively in 41 cases (13.9%), among which 4 patients with type C showed no return of spinal cord monitoring data. The 14 subtype C+ patients (93.3%) had IONM events. Univariate logistic regression analysis showed that patients with a type C spinal cord (subtype C-: odds ratio [OR], 10.390; 95% confidence interval [CI], 2.215–48.735; p = 0.003; subtype C+, OR, 497.000; 95% CI, 42.126– 5,863.611; p < 0.001) are at significantly higher risk of a positive IONM event during deformity correction compared to those with a type A. In further multiple logistic regression analysis, the spinal cord classification (OR, 5.371; 95% CI, 2.966–9.727; p < 0.001) was confirmed as an independent risk factor for IONM events.
Conclusion
We presented a new spinal cord classification system based on the relative position of the spinal cord and vertebrae to predict the risk of IONM events in patients with kyphotic deformity. In patients with type C spinal cord, especially those in C+ cases, it is essential to be aware of potential IONM events, and adopt standard operating procedures to facilitate neurological recovery.
7.The Role of Spinal Cord Compression in Predicting Intraoperative Neurophysiological Monitoring Events in Patients With Kyphotic Deformity: A Magnetic Resonance Imaging-Based Study
Zhen JIN ; Jie LI ; Hui XU ; Zongshan HU ; Yanjie XU ; Ziyang TANG ; Yong QIU ; Zhen LIU ; Zezhang ZHU
Neurospine 2024;21(2):701-711
Objective:
To establish a novel classification system for predicting the risk of intraoperative neurophysiological monitoring (IONM) events in surgically-treated patients with kyphotic deformity.
Methods:
Patients with kyphotic deformity who underwent surgical correction of cervicothoracic, thoracic, or thoracolumbar kyphosis in our center from July 2005 to December 2020 were recruited. We proposed a classification system to describe the morphology of the spinal cord on T2-weighted sagittal magnetic resonance imaging: type A, circular/symmetric cord with visible cerebrospinal fluid (CSF) between the cord and vertebral body; type B, circular/oval/symmetric cord with no visible CSF between the cord and vertebral body; type C, spinal cord that is fattened/deformed by the vertebral body, with no visible CSF between the cord and vertebral body. Furthermore, based on type C, the spinal cord compression ratio (CR) < 50% was defined as the subtype C-, while the spinal cord CR ≥ 50% was defined as the subtype C+. IONM event was documented, and a comparative analysis was made to evaluate the prevalence of IONM events among patients with diverse spinal cord types.
Results:
A total of 294 patients were reviewed, including 73 in type A; 153 in type B; 53 in subtype C- and 15 in subtype C+. Lower extremity transcranial motor-evoked potentials and/or somatosensory evoked potentials were lost intraoperatively in 41 cases (13.9%), among which 4 patients with type C showed no return of spinal cord monitoring data. The 14 subtype C+ patients (93.3%) had IONM events. Univariate logistic regression analysis showed that patients with a type C spinal cord (subtype C-: odds ratio [OR], 10.390; 95% confidence interval [CI], 2.215–48.735; p = 0.003; subtype C+, OR, 497.000; 95% CI, 42.126– 5,863.611; p < 0.001) are at significantly higher risk of a positive IONM event during deformity correction compared to those with a type A. In further multiple logistic regression analysis, the spinal cord classification (OR, 5.371; 95% CI, 2.966–9.727; p < 0.001) was confirmed as an independent risk factor for IONM events.
Conclusion
We presented a new spinal cord classification system based on the relative position of the spinal cord and vertebrae to predict the risk of IONM events in patients with kyphotic deformity. In patients with type C spinal cord, especially those in C+ cases, it is essential to be aware of potential IONM events, and adopt standard operating procedures to facilitate neurological recovery.
8.The Role of Spinal Cord Compression in Predicting Intraoperative Neurophysiological Monitoring Events in Patients With Kyphotic Deformity: A Magnetic Resonance Imaging-Based Study
Zhen JIN ; Jie LI ; Hui XU ; Zongshan HU ; Yanjie XU ; Ziyang TANG ; Yong QIU ; Zhen LIU ; Zezhang ZHU
Neurospine 2024;21(2):701-711
Objective:
To establish a novel classification system for predicting the risk of intraoperative neurophysiological monitoring (IONM) events in surgically-treated patients with kyphotic deformity.
Methods:
Patients with kyphotic deformity who underwent surgical correction of cervicothoracic, thoracic, or thoracolumbar kyphosis in our center from July 2005 to December 2020 were recruited. We proposed a classification system to describe the morphology of the spinal cord on T2-weighted sagittal magnetic resonance imaging: type A, circular/symmetric cord with visible cerebrospinal fluid (CSF) between the cord and vertebral body; type B, circular/oval/symmetric cord with no visible CSF between the cord and vertebral body; type C, spinal cord that is fattened/deformed by the vertebral body, with no visible CSF between the cord and vertebral body. Furthermore, based on type C, the spinal cord compression ratio (CR) < 50% was defined as the subtype C-, while the spinal cord CR ≥ 50% was defined as the subtype C+. IONM event was documented, and a comparative analysis was made to evaluate the prevalence of IONM events among patients with diverse spinal cord types.
Results:
A total of 294 patients were reviewed, including 73 in type A; 153 in type B; 53 in subtype C- and 15 in subtype C+. Lower extremity transcranial motor-evoked potentials and/or somatosensory evoked potentials were lost intraoperatively in 41 cases (13.9%), among which 4 patients with type C showed no return of spinal cord monitoring data. The 14 subtype C+ patients (93.3%) had IONM events. Univariate logistic regression analysis showed that patients with a type C spinal cord (subtype C-: odds ratio [OR], 10.390; 95% confidence interval [CI], 2.215–48.735; p = 0.003; subtype C+, OR, 497.000; 95% CI, 42.126– 5,863.611; p < 0.001) are at significantly higher risk of a positive IONM event during deformity correction compared to those with a type A. In further multiple logistic regression analysis, the spinal cord classification (OR, 5.371; 95% CI, 2.966–9.727; p < 0.001) was confirmed as an independent risk factor for IONM events.
Conclusion
We presented a new spinal cord classification system based on the relative position of the spinal cord and vertebrae to predict the risk of IONM events in patients with kyphotic deformity. In patients with type C spinal cord, especially those in C+ cases, it is essential to be aware of potential IONM events, and adopt standard operating procedures to facilitate neurological recovery.
9.The Role of Spinal Cord Compression in Predicting Intraoperative Neurophysiological Monitoring Events in Patients With Kyphotic Deformity: A Magnetic Resonance Imaging-Based Study
Zhen JIN ; Jie LI ; Hui XU ; Zongshan HU ; Yanjie XU ; Ziyang TANG ; Yong QIU ; Zhen LIU ; Zezhang ZHU
Neurospine 2024;21(2):701-711
Objective:
To establish a novel classification system for predicting the risk of intraoperative neurophysiological monitoring (IONM) events in surgically-treated patients with kyphotic deformity.
Methods:
Patients with kyphotic deformity who underwent surgical correction of cervicothoracic, thoracic, or thoracolumbar kyphosis in our center from July 2005 to December 2020 were recruited. We proposed a classification system to describe the morphology of the spinal cord on T2-weighted sagittal magnetic resonance imaging: type A, circular/symmetric cord with visible cerebrospinal fluid (CSF) between the cord and vertebral body; type B, circular/oval/symmetric cord with no visible CSF between the cord and vertebral body; type C, spinal cord that is fattened/deformed by the vertebral body, with no visible CSF between the cord and vertebral body. Furthermore, based on type C, the spinal cord compression ratio (CR) < 50% was defined as the subtype C-, while the spinal cord CR ≥ 50% was defined as the subtype C+. IONM event was documented, and a comparative analysis was made to evaluate the prevalence of IONM events among patients with diverse spinal cord types.
Results:
A total of 294 patients were reviewed, including 73 in type A; 153 in type B; 53 in subtype C- and 15 in subtype C+. Lower extremity transcranial motor-evoked potentials and/or somatosensory evoked potentials were lost intraoperatively in 41 cases (13.9%), among which 4 patients with type C showed no return of spinal cord monitoring data. The 14 subtype C+ patients (93.3%) had IONM events. Univariate logistic regression analysis showed that patients with a type C spinal cord (subtype C-: odds ratio [OR], 10.390; 95% confidence interval [CI], 2.215–48.735; p = 0.003; subtype C+, OR, 497.000; 95% CI, 42.126– 5,863.611; p < 0.001) are at significantly higher risk of a positive IONM event during deformity correction compared to those with a type A. In further multiple logistic regression analysis, the spinal cord classification (OR, 5.371; 95% CI, 2.966–9.727; p < 0.001) was confirmed as an independent risk factor for IONM events.
Conclusion
We presented a new spinal cord classification system based on the relative position of the spinal cord and vertebrae to predict the risk of IONM events in patients with kyphotic deformity. In patients with type C spinal cord, especially those in C+ cases, it is essential to be aware of potential IONM events, and adopt standard operating procedures to facilitate neurological recovery.
10.A novel spinal cord classification system: predict Intraoperative Neuromonitoring Event during correction of congenital kyphosis
Hui XU ; Zhen JIN ; Junyin QIU ; Kiram ABDUKAHAR ; Chen LING ; Yanjie XU ; Ziyang TANG ; Jie LI ; Zongshan HU ; Zezhang ZHU ; Yong QIU ; Zhen LIU
Chinese Journal of Orthopaedics 2023;43(17):1155-1163
Objective:To propose a novel classification system based on the morphology and relative position of spinal cord in the spinal canal at sagittal T2-MRI, and to investigate the incidence and risk factors of the intraoperative neuromonitoring event (IONME) across these classifications.Methods:From January 2016 to December 2021, a consecutive cohort of 85 patients who underwent surgical correction of congenital kyphosis with pedicle screw/rod constructs were retrospectively reviewed, including 43 males and 42 females, aged 14.6±6.1 years old. According to the morphology and relative location of spinal cord at the apex of the curve on the sagittal-T2 MRI, patients were divided into three groups. Type A (5 cases) is characterized by the spinal cord centrally positioned within the spinal canal, surrounded by discernible cerebrospinal fluid (CSF). Type B (33 cases) depicts the spinal cord abutting the spinal canal's anterior wall, maintaining its intrinsic morphology. In Type C (47 patients), the spinal cord is contorted by the apical vertebral body, devoid of interposing CSF. The global kyphosis (GK) and sagittal deformity ratio (SDAR) of patients were measured before surgery. The incidence of IONME were recorded. All patients included in the study were further divided into the IONME group and the non-IONME group. Potential risk factors were identified using univariate testing. Binary Logistic Regression was used to analyze the independent risk factors for IONM.Results:All of 85 patients were reviewed: 5 (5.9%) Type A; 33 (38.8%) Type B; and 47 (55.3%) Type C spinal cords. Intraoperatively, 27 (31.8%) instances presented with lost trans-cranial motor-evoked potentials (MEPs) and/or somatosensory evoked potentials (SSEPs). Of these, 2 (7.4%) were Type B, and 25 (92.6%) were Type C, reflecting a statistically significant variance in IONME occurrences across types (χ 2=27.15, P<0.001). Notable differences were observed between IONME and non-IONME groups concerning GK, SDAR, and apex location ( t=5.41, P<0.001; t=3.65, P<0.001; χ 2=7.71, P=0.005). Univariate analysis showed that potential risk factors of IONME included Type C spinal cord ( OR=20.46, P<0.001), higher GK ( OR=1.07, P<0.001), SDAR ( OR=1.15, P=0.002) and apical vertebrae located at middle thoracic( OR=4.30, P=0.008). Independent predictors identified on binary Logistics regression modeling included higher GK ( OR=1.05, P=0.015), Type C spinal cord ( OR=6.22, P=0.042) and apex located at middle thoracic ( OR=6.43, P=0.021). Specifically, within Type C, 79% of cases where the apical vertebra was mid-thoracic experienced IONME, contrasting the 42% incidence observed in those with a lower thoracic apex positioning, signifying a notably elevated IONME likelihood for the mid-thoracic region (χ 2=5.16, P=0.023). Conclusion:Risk factors of IONME included Type C spinal cord, higher GK and apex located at middle thoracic during correction of congenital kyphosis. Preoperative MRI spinal cord typing showed great predictive value for IONME.

Result Analysis
Print
Save
E-mail