1.Factors affecting Pomacea distribution and prediction of suitable distribution areas of Pomacea in Dali Bai Autonomous Prefecture of Yunnan Province
Zhongqiu LI ; Yuhua LIU ; Yunhai GUO ; Zixin WEI ; Junhu CHEN ; Qiang WANG ; Tianmei LI ; Shizhu LI
Chinese Journal of Schistosomiasis Control 2025;37(1):69-75
Objective To investigate the factors affecting the distribution of Pomacea and project the trends in the spread of suitable distribution areas of Pomacea in 2050 and 2070 in Dali Bai Autonomous Prefecture, so as to provide insights into Pomacea control in the prefecture. Methods The longitudes and latitudes of Pomacea sampling sites were captured based on Pomacea field survey data in 12 cities (counties) of Dali Bai Autonomous Prefecture from 2023 to 2024. A total of 19 climatic factors (annual mean temperature, mean diurnal range, isothermality, temperature seasonality, maximum temperature of the warmest month, minimum temperature of the coldest month, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest month, mean temperature of the coldest month, annual precipitation, precipitation of the wettest month, precipitation of the driest month, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, mean temperature of the warmest quarter, and mean temperature of the coldest quarter) and representative concentration pathways (RCPs) were retrieved from the world climate database (www.worldclim.org). All climatic variables were employed to create a maximum entropy (MaxEnt) model. The predictive accuracy of the model was assessed with the area under the receiver operating characteristic (ROC) curve (AUC), and the contributions of these 19 climatic factors to the distribution of Pomacea were analyzed in Dali Bai Autonomous Prefecture using Jackknife test. In addition, the suitable distribution areas of Pomacea were predicted with the MaxEnt model in Dali Bai Autonomous Prefecture in 2024 and in 2050 and 2070 under RCP4.5. Results Data pertaining to 91 Pomacea sampling sites were captured. ROC analysis revealed the MaxEnt model had an AUC value of 0.885 ± 0.088 for predicting the suitable distribution areas of Pomacea in Dali Bai Autonomous Prefecture. Of the 19 climatic factors, the maximum temperature of the warmest month had the highest contribution to the distribution of Pomacea in Dali Bai Autonomous Prefecture, followed by mean temperature of the driest quarter, mean temperature of the wettest quarter and minimum temperature of the coldest month. The suitable distribution area of Pomacea was predicted to be 14 555.69 km2 in Dali Bai Autonomous Prefecture in 2024, and would expand gradually to the southeastern part of the prefecture in the future due to climatic factors. The suitable distribution areas of Pomacea were projected to expand to 21 475.61 km2 in 2050 and 25 782.52 km2 in 2070 in Dali Bai Autonomous Prefecture, respectively. Conclusions Temperature is an important contributor to the distribution of Pomacea in Dali Bai Autonomous Prefecture, and the suitable distribution area of Pomacea will gradually expand to the southeastern part of the prefecture in 2050 and 2070.
2.Urban-rural disparities in mortality due to stroke subtypes in China and its provinces, 2015-2020.
Yi REN ; Jia YANG ; Peng YIN ; Wei LIU ; Zheng LONG ; Chen ZHANG ; Zixin WANG ; Haijie LIU ; Maigeng ZHOU ; Qingfeng MA ; Junwei HAO
Chinese Medical Journal 2025;138(11):1345-1354
BACKGROUND:
Death burden of stroke is severe with over one-third rural residents in China, but there is still a lack of specific national and high-quality reports on the urban-rural differences in stroke burden, especially for subtypes. We aimed to update the understanding of urban-rural differences in stroke deaths.
METHODS:
This is a descriptive observational study. Data from the national mortality surveillance system, which covers 323.8 million with 605 disease surveillance points (DSPs) across all 31 provinces, municipalities, and autonomous regions in China. All deaths from stroke as the underlying cause from 2015 to 2020 according to DSPs. Crude mortality rate and age-standardized mortality rate (ASMR) were estimated through DSPs. Average annual percentage change was used to explain the change in mortality rate.
RESULTS:
From 2015 to 2020, the majority of deaths from all stroke subtypes occurred in rural areas. There were significant differences between the changes of urban and rural ASMRs. On the whole, the changes in urban areas were evidently better, and the ASMR differences were basically expanding. Stroke ASMR in urban China decreased by 15.5%. The rural ASMR of ischemic stroke increased by 12.9%. The rural and urban ASMRs of intracerebral hemorrhage decreased by 24.9% and 27.4%, and those of subarachnoid hemorrhage decreased by 29.5% and 40.4%, respectively. The highest ASMRs of all stroke subtypes and the increasing trend of ischemic stroke ASMR make rural males the focus of stroke management.
CONCLUSIONS
The death burden of stroke varies greatly between urban and rural China. Rural residents face unique challenges.
Humans
;
China/epidemiology*
;
Stroke/mortality*
;
Rural Population/statistics & numerical data*
;
Male
;
Female
;
Urban Population/statistics & numerical data*
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Adult
3.Transparency of clinical practice guidelines: A mixed methods research.
Xinyi WANG ; Youlin LONG ; Tengyue HU ; Zixin YANG ; Liqin LIU ; Liu YANG ; Yifan CHENG ; Ran GU ; Yanjiao SHEN ; Nan YANG ; Jin HUANG ; Yaolong CHEN ; Liang DU
Chinese Medical Journal 2025;138(15):1882-1884
4.Design and analysis of human arm pathological tremor simulation system.
Zixin HE ; Haiping LIU ; Qingsheng LIU ; Yu JIANG ; Zhu ZHU
Journal of Biomedical Engineering 2025;42(4):790-798
In order to characterize the characteristics of pathological tremor of human upper limb, a simulation system of pathological tremor of human arm was provided and its dynamic response was analyzed. Firstly, in this study, a two-degree-of-freedom human arm dynamic model was established and linearized according to the arbitrary initial angle of joints. After solving the analytical solutions of steady-state responses of the joints, the numerical solution was used to verify it. The results of theoretical analysis show that the two natural frequencies of the developed dynamic model are 2.9 Hz and 5.4 Hz, respectively, which meet the characteristic frequency range of pathological tremors. Then, combined with the measured parameters of human arm, a tremor simulation system was built, and the measured results of joint responses are in good agreement with the theoretical and simulation analysis results, which verifies the effectiveness of the theoretical model. The results show that the human arm pathological tremor simulation system designed in this paper can characterize the frequency and response amplitude of the human upper limb pathological tremor. Moreover, the relevant research lays a theoretical foundation and experimental conditions for the subsequent development of wearable tremor suppression devices.
Humans
;
Tremor/physiopathology*
;
Computer Simulation
;
Arm/physiopathology*
;
Joints/physiopathology*
;
Biomechanical Phenomena
;
Upper Extremity/physiopathology*
;
Models, Biological
5.Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support.
Dengying YAN ; Qiguang ZHENG ; Kai CHANG ; Rui HUA ; Yiming LIU ; Jingyan XUE ; Zixin SHU ; Yunhui HU ; Pengcheng YANG ; Yu WEI ; Jidong LANG ; Haibin YU ; Xiaodong LI ; Runshun ZHANG ; Wenjia WANG ; Baoyan LIU ; Xuezhong ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1310-1328
Traditional Chinese medicine (TCM) represents a paradigmatic approach to personalized medicine, developed through the systematic accumulation and refinement of clinical empirical data over more than 2000 years, and now encompasses large-scale electronic medical records (EMR) and experimental molecular data. Artificial intelligence (AI) has demonstrated its utility in medicine through the development of various expert systems (e.g., MYCIN) since the 1970s. With the emergence of deep learning and large language models (LLMs), AI's potential in medicine shows considerable promise. Consequently, the integration of AI and TCM from both clinical and scientific perspectives presents a fundamental and promising research direction. This survey provides an insightful overview of TCM AI research, summarizing related research tasks from three perspectives: systems-level biological mechanism elucidation, real-world clinical evidence inference, and personalized clinical decision support. The review highlights representative AI methodologies alongside their applications in both TCM scientific inquiry and clinical practice. To critically assess the current state of the field, this work identifies major challenges and opportunities that constrain the development of robust research capabilities-particularly in the mechanistic understanding of TCM syndromes and herbal formulations, novel drug discovery, and the delivery of high-quality, patient-centered clinical care. The findings underscore that future advancements in AI-driven TCM research will rely on the development of high-quality, large-scale data repositories; the construction of comprehensive and domain-specific knowledge graphs (KGs); deeper insights into the biological mechanisms underpinning clinical efficacy; rigorous causal inference frameworks; and intelligent, personalized decision support systems.
Medicine, Chinese Traditional/methods*
;
Artificial Intelligence
;
Humans
;
Precision Medicine
;
Decision Support Systems, Clinical
6.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
7.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
8.Exploration of detection methods for free silica with different crystal forms in dust
Qi GENG ; Chaoyang WANG ; Chengming MENG ; Zixin HE ; Liu YANG ; Yudan ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(3):180-183
Objective:To investigate the differences and applicability of free silica detection methods of different crystal forms in dust, and to provide a basis for the selection of various methods.Methods:From December 2021 to June 2022, dust samples from 20 enterprises in different industries in 18 cities in Henan Province were randomly selected as the investigation objects. X-ray diffraction (XRD) method was used to analyze the samples and classify the samples. Based on GBZ/T 192.4-2007 "Determination of Dust in the Air of Workplace-Part 4: Content of Free Silica in Dust", pyrophosphate method and infrared spectrophotometry were used for quantitative determination. The measured results were analyzed by paired sample t test to evaluate the advantages and disadvantages of the two methods and their applicable scope. Results:The XRD results of 20 dust samples could be divided into α, β, γ crystal types and the mixed type of α and γ. There was no significant difference between pyrophosphate method and infrared spectrophotometry ( P=0.180). The pyrophosphate method results of β, γ and α, γ mixed crystalline free silica were significantly higher than those of infrared spectrophotometry, and the difference was statistically significant ( P<0.001) . Conclusion:Pyrophosphate method and infrared spectrophotometry are suitable for α-type free silica, while pyrophosphate method is suitable for β, γ and α, γ mixed crystalline free silica.
9.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
10.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.

Result Analysis
Print
Save
E-mail