1.Acteoside ameliorates hepatocyte ferroptosis and hepatic ischemia-reperfusion injury via targeting PCBP2.
Kexin JIA ; Yinhao ZHANG ; Fanghong LI ; Runping LIU ; Jianzhi WU ; Jiaorong QU ; Ranyi LUO ; Zixi HUANG ; Zhe XU ; Xiaojiaoyang LI
Acta Pharmaceutica Sinica B 2025;15(4):2077-2094
Hepatic ischemia-reperfusion injury (HIRI) has been considered as an inevitable process of liver transplantation. Hepatocyte ferroptosis is a key factor in HIRI development, yet precise mechanism and potential therapies are still unclear. Here, we demonstrated a strong correlation between hepatocyte ferroptosis and the downregulation of poly(rC)-binding protein (PCBP2), which compromised the stability of antiporter system Xc- (consisted of SL3A2/SLC7A11). Besides, inhibiting PCBP2 contributed to facilitating cofactor p300 to enhance the transcriptional activity of HIF1α, leading to the expression and secretion of HMGB1. Then, released HMGB1 from ferroptotic hepatocytes worsened M1 macrophage recruitment and immune response during HIRI. Additionally, acteoside (ACT) was shown to assist PCBP2 in stabilizing the mRNA stability of Slc3a2 and Slc7a11, as well as enhance the binding affinity of PCBP2-system Xc-. Beyond that, ACT also supported PCBP2 to limit HMGB1-induced M1 macrophage recruitment through imposing restrictions on p300 and HIF1α. Furthermore, specific knockdown of PCBP2 in hepatocytes directly interposed the therapeutic efficacy of ACT on HIRI mice. In conclusion, ACT alleviated hepatocyte ferroptosis and HIRI via promoting PCBP2 to maintain the stability of system Xc- and limit HIF1α/p300-HMGB1 signaling. These findings highlight the therapeutic benefits of ACT in treating HIRI and offer insights into innovative therapeutic strategies.
2.New insights into translational research in Alzheimer's disease guided by artificial intelligence, computational and systems biology.
Shulan JIANG ; Zixi TIAN ; Yuchen YANG ; Xiang LI ; Feiyan ZHOU ; Jianhua CHENG ; Jihui LYU ; Tingting GAO ; Ping ZHANG ; Hongbin HAN ; Zhiqian TONG
Acta Pharmaceutica Sinica B 2025;15(10):5099-5126
Alzheimer's disease (AD) is characterized by cognitive and functional deterioration, with pathological features such as amyloid-beta (Aβ) aggregates in the extracellular spaces of parenchymal neurons and intracellular neurofibrillary tangles formed by the hyperphosphorylation of tau protein. Despite a thorough investigation, current treatments targeting the reduction of Aβ production, promotion of its clearance, and inhibition of tau protein phosphorylation and aggregation have not met clinical expectations, posing a substantial obstacle in the development of drugs for AD. Recently, artificial intelligence (AI), computational biology (CB), and systems biology (SB) have emerged as promising methodologies in AD research. Their capacity to analyze extensive and varied datasets facilitates the identification of intricate patterns, thereby enriching our comprehension of AD pathology. This paper provides a comprehensive examination of the utilization of AI, CB, and SB in the diagnosis of AD, including the use of imaging omics for early detection, drug discovery methods such as lecanemab, and complementary therapies like phototherapy. This review offers novel perspectives and potential avenues for further research in the realm of translational AD studies.
3.The SIRT6 gene promotes the anti-aging effects of mesenchymal stem cells in dogs.
Dongyao HAN ; Balun LI ; Miao HAN ; Hongkai TIAN ; Jiaqi GAO ; Zengyu ZHANG ; Zixi LING ; Na LI ; Jinlian HUA
Chinese Journal of Biotechnology 2025;41(7):2719-2734
Mesenchymal stem cells (MSCs) are an effective therapeutic strategy to delay aging in dogs, they are prone to aging and have poor genetic stability when cultured for a long time in vitro. Therefore, it is of great significance to explore a method to improve the anti-aging ability of MSCs. Previous studies have shown that sirtuin 6 (SIRT6) plays an important role in anti-aging. This study constructed MSCs with overexpressed SIRT6 gene. Through Giemsa staining and senescence-associated β-galactosidase staining, it was found that SIRT6 significantly enhances the anti-aging capacity of MSCs. Transmission electron microscopy imaging and the detection of oxidative stress-related indicators revealed that SIRT6 improves the anti-aging capacity of MSCs by maintaining mitochondrial homeostasis and reducing oxidative stress levels. Transcriptome sequencing analysis revealed that SIRT6 mainly acted on phosphatidylinositol-3-kinase, mitogen-activated protein kinase and other aging and inflammation related pathways. In the establishment and verification of aging models in mice and dogs, it was found that the spatial memory ability of the model mice was significantly increased after intravenous transplantation of SIRT6 overexpression cells, the organ index was also significantly changed, and the anti-oxidative capacity of the dogs and mice blood was improved. The morphology of the spleens and livers in the SIRT6 overexpression cell treatment group could be effectively restored, and the expression levels of aging and inflammation-related proteins were significantly decreased. This study provides a new idea for the study of SIRT6-mediated anti-aging of MSCs.
Animals
;
Dogs
;
Mesenchymal Stem Cells/metabolism*
;
Sirtuins/genetics*
;
Aging/physiology*
;
Mice
;
Oxidative Stress
;
Mesenchymal Stem Cell Transplantation
4.Oncogene goosecoid is transcriptionally regulated by E2F1 and correlates with disease progression in prostate cancer
Yue GE ; Sheng MA ; Qiang ZHOU ; Zezhong XIONG ; Yanan WANG ; Le LI ; Zheng CHAO ; Junbiao ZHANG ; Tengfei LI ; Zixi WU ; Yuan GAO ; Guanyu QU ; Zirui XI ; Bo LIU ; Xi WU ; Zhihua WANG
Chinese Medical Journal 2024;137(15):1844-1856
Background::Although some well-established oncogenes are involved in cancer initiation and progression such as prostate cancer (PCa), the long tail of cancer genes remains to be defined. Goosecoid ( GSC) has been implicated in cancer development. However, the comprehensive biological role of GSC in pan-cancer, specifically in PCa, remains unexplored. The aim of this study was to investigate the role of GSC in PCa development. Methods::We performed a systematic bioinformatics exploration of GSC using datasets from The Cancer Genome Atlas, Genotype-Tissue Expression, Gene Expression Omnibus, German Cancer Research Center, and our in-house cohorts. First, we evaluated the expression of GSC and its association with patient prognosis, and identified GSC-relevant genetic alterations in cancers. Further, we focused on the clinical characterization and prognostic analysis of GSC in PCa. To understand the transcriptional regulation of GSC by E2F transcription factor 1 ( E2F1), we performed chromatin immunoprecipitation quantitative polymerase chain reaction (qPCR). Functional experiments were conducted to validate the effect of GSC on the tumor cellular phenotype and sensitivity to trametinib. Results::GSC expression was elevated in various tumors and significantly correlated with patient prognosis. The alterations of GSC contribute to the progression of various tumors especially in PCa. Patients with PCa and high GSC expression exhibited worse progression-free survival and biochemical recurrence outcomes. Further, GSC upregulation in patients with PCa was mostly accompanied with higher Gleason score, advanced tumor stage, lymph node metastasis, and elevated prostate-specific antigen (PSA) levels. Mechanistically, the transcription factor, E2F1, stimulates GSC by binding to its promoter region. Detailed experiments further demonstrated that GSC acted as an oncogene and influenced the response of PCa cells to trametinib treatment. Conclusions::GSC was highly overexpressed and strongly correlated with patient prognosis in PCa. We found that GSC, regulated by E2F1, acted as an oncogene and impeded the therapeutic efficacy of trametinib in PCa.
5.Progress in regulation of macrophage function by bitter taste receptors and its mechanism
Lele WANG ; Yuzhen FANG ; Yuqing MA ; Zixi ZHAO ; Ruonan MA ; Xing WANG ; Yuxin ZHANG
Chinese Journal of Pathophysiology 2024;40(8):1520-1528
Bitter taste receptors,also known as type 2 taste receptors(T2Rs),are found not only in the mouth's taste bud cells but also in various tissues and cells,including macrophages.Macrophages,known for their re-markable plasticity,play a crucial role in regulating innate immunity,managing inflammation,and orchestrating immune responses to antigens,pathogens,and environmental factors.Recently,the study of the expression and function of bitter taste receptors within macrophages has garnered significant interest.This review summarizes the expression levels and dis-tribution characteristics of bitter taste receptors in macrophages and examines their effects on macrophage polarization,phagocytosis,and chemotaxis,as well as their potential molecular mechanisms.The purpose of this review is to provide in-sight and perspectives for research on the regulatory role of T2Rs in macrophage functions.
6.Inhibitory effects of ursolic acid on IL-6-mediated invasion and migration of breast cancer cells
Rongrong LIU ; Tao ZHANG ; Fenfen XIANG ; Zixi CHEN ; Mengzhe ZHANG ; Xiangdong KANG ; Rong WU
China Pharmacy 2023;34(8):955-960
OBJECTIVE To investigate the inhibitory effects of ursolic acid on interleukin-6 (IL-6)-mediated invasion and migration of breast cancer MDA-MB-231 cells (hereinafter referred to as “231 cells”). METHODS The effects of 20, 40, 80, 160 and 320 µmol/L ursolic acid on the proliferation rate of 231 cells were measured by CCK-8 method. The breast cancer 231 cells were divided into control group, model group and administration group. The migration and invasion abilities of cells were detected by scratch assay and Transwell assay. Real-time quantitative polymerase chain reaction (q-PCR) assay and Western blot assay were used to detect the mRNA and protein expressions of epithelial-mesenchymal transition-related makers such as E cadherin (E-cad), matrix metalloprotein 2 (MMP2), MMP9, vimentin (Vim), CD44 molecule (CD44) and aldehyde dehydrogenase 1 family member A1 (ALDH1A1). The phosphorylation levels of JAK2 and STAT3 in the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway (in terms of p-JAK2/JAK2 ratio and p-STAT3/STAT3 ratio) were detected by Western blot assay. RESULTS A low concentration of ursolic acid of 20 µmol/L (no significant inhibitory effect on cell proliferation ability) was selected as the subsequent administration concentration. Compared with the control group, the migration and invasion abilities of cells in the model group were significantly enhanced (P<0.05); compared with the model group, the migration and invasion abilities of cells in the administered group were significantly reduced (P<0.05). Compared with the control group, the relative mRNA and protein expressions of epithelial-mesenchymal transition-related markers MMP9, MMP2, Vim, ALDH1A1 and CD44 were all elevated to different extents, and the mRNA and protein expressions of E-cad were all decreased to different extents in the model group cells, and part of the differences had statistical significance (P<0.05), the p-JAK2/JAK2 ratio and p-STAT3/STAT3 ratio were significantly increased in the model group (P<0.05); compared with the model group, the expressions of the above indicators were reversed to some extent in the administration group. CONCLUSIONS Ursolic acid blocks the activation of JAK2/STAT3 signaling pathwby the inflammatory factor IL-6, which ultimately interrupts the invasion and metastasis of breast cancer cells.
7.Protective effects of catalpol on cardio-cerebrovascular diseases:A comprehensive review
Zixi ZHANG ; Yongguo DAI ; Yichao XIAO ; Qiming LIU
Journal of Pharmaceutical Analysis 2023;13(10):1089-1101
Catalpol,an iridoid glucoside isolated from Rehmannia glutinosa,has gained attention due to its potential use in treating cardio-cerebrovascular diseases(CVDs).This extensive review delves into recent studies on catalpol's protective properties in relation to various CVDs,such as atherosclerosis,myocardial ischemia,infarction,cardiac hypertrophy,and heart failure.The review also explores the compound's anti-oxidant,anti-inflammatory,and anti-apoptotic characteristics,emphasizing the role of vital signaling pathways,including PGC-1a/TERT,PI3K/Akt,AMPK,Nrf2/HO-1,estrogen receptor(ER),Nox4/NF-κB,and GRP78/PERK.The article discusses emerging findings on catalpol's ability to alleviate diabetic cardiovascular complications,thrombosis,and other cardiovascular-related conditions.Although clinical studies specifically addressing catalpol's impact on CVDs are scarce,the compound's established safety and well-tolerated nature suggest that it could be a valuable treatment alternative for CVD patients.Further investigation into catalpol and related iridoid derivatives may unveil new opportunities for devising natural and efficacious CVD therapies.
8.Radiation shielding for the intraoperative radiotherapy using low energy X-rays
Daguang ZHANG ; Zixi ZHU ; Jiana SUN ; Yuan TIAN ; Wei WANG
Chinese Journal of Radiological Medicine and Protection 2022;42(8):629-635
Objective:To assess the shielding requirements of low energy X-ray intraoperative radiotherapy room under the domestic and foreign standards and guidelines, to measure the sured transmission factors for a range of shielding materials, the ambient dose equivalent rate around concerned positions and the shielding effect of protective devices, so as to provide references for shielding design of such radiotherapy units and applications of radiological protection devices.Methods:The required shielding thicknesses for a treatment room with INTRABEAM intraoperative radiotherapy system were calculated under the Chinese national standard GBZ 121, IPEM report No. 75 and NCRP report No. 151, respectively. The transmission factors for a range of shielding materials including solid water slab, shielding sheet and shielding apron were measured. Moreover, the ambient dose equivalent rates were measured under the simulated working conditions and the shielding effectiveness of a lead screen was evaluated.Results:The required lead thicknesses calculated under different standards and guidelines were less than 0.6 mm for all the concerned points, with the differences at sub-millimeter level. The low energy X-rays generated by this equipment attenuated rapidly in the shielding materials. The measured transmission factors of 0.05 mm lead equivalent shielding sheet and 0.25 mm lead equivalent shielding apron were 0.068 and 0.003 8, respectively. When the radiation was delivered using spherical applicator without any attenuation, the ambient dose equivalent rates at 1 m and 2 m from the X-ray source were 10.7 and 2.6 mSv/h, respectively. The corresponding measurement values decreased to 3.8 and 0.9 μSv/h, respectively, when the spherical applicator was inserted into a small water tank. Meanwhile, the ambient dose equivalent rate at 2 m was reduced to the background level when using protective screen.Conclusions:The shielding requirements for a low energy X-ray intraoperative radiotherapy facility are minimal, with low effective energy of X-rays generated by this equipment, but the dose rate close to the unshielded radiation source is high. The shielding scheme of treatment room should be optimized in design and the protective device should be used in a reasonable way.
9.Updates in diagnosis, treatment, and prevention of anaphylaxis to neuromuscular blocking agents and their antagonists
Zixi WANG ; Xu LI ; Xiuhua ZHANG ; Kai GUAN
Chinese Journal of Preventive Medicine 2022;56(6):740-747
Anaphylaxis to perioperative drugs has an insidious and rapid onset, can be life-threatening, and often results in the suspension of surgery. Neuromuscular blocking agents (NMBAs) are currently considered to be the most common cause of anaphylactic reactions among anesthetic drugs. With the increasing amount of anesthesia and surgery in the world, there are more and more NMBAs use, and the corresponding allergic risk is also increasing. With the use of NMBAs, their antagonists, such as neostigmine and sugammadex, are often used too, which have more and more allergy reports in clinical practice. Due to the complex mechanism of allergy caused by NMBAs and their antagonists, it is difficult to find out the culprit drug. The cross-reactivity between NMBAs is common, so it is often difficult to choose alternative drugs. This article summarized the epidemiology, pathological mechanisms, diagnostic methods and procedures, immediate treatment, and prevention strategies of anaphylaxis caused by these drugs.
10.Updates in diagnosis, treatment, and prevention of anaphylaxis to neuromuscular blocking agents and their antagonists
Zixi WANG ; Xu LI ; Xiuhua ZHANG ; Kai GUAN
Chinese Journal of Preventive Medicine 2022;56(6):740-747
Anaphylaxis to perioperative drugs has an insidious and rapid onset, can be life-threatening, and often results in the suspension of surgery. Neuromuscular blocking agents (NMBAs) are currently considered to be the most common cause of anaphylactic reactions among anesthetic drugs. With the increasing amount of anesthesia and surgery in the world, there are more and more NMBAs use, and the corresponding allergic risk is also increasing. With the use of NMBAs, their antagonists, such as neostigmine and sugammadex, are often used too, which have more and more allergy reports in clinical practice. Due to the complex mechanism of allergy caused by NMBAs and their antagonists, it is difficult to find out the culprit drug. The cross-reactivity between NMBAs is common, so it is often difficult to choose alternative drugs. This article summarized the epidemiology, pathological mechanisms, diagnostic methods and procedures, immediate treatment, and prevention strategies of anaphylaxis caused by these drugs.

Result Analysis
Print
Save
E-mail