1.New insights into translational research in Alzheimer's disease guided by artificial intelligence, computational and systems biology.
Shulan JIANG ; Zixi TIAN ; Yuchen YANG ; Xiang LI ; Feiyan ZHOU ; Jianhua CHENG ; Jihui LYU ; Tingting GAO ; Ping ZHANG ; Hongbin HAN ; Zhiqian TONG
Acta Pharmaceutica Sinica B 2025;15(10):5099-5126
Alzheimer's disease (AD) is characterized by cognitive and functional deterioration, with pathological features such as amyloid-beta (Aβ) aggregates in the extracellular spaces of parenchymal neurons and intracellular neurofibrillary tangles formed by the hyperphosphorylation of tau protein. Despite a thorough investigation, current treatments targeting the reduction of Aβ production, promotion of its clearance, and inhibition of tau protein phosphorylation and aggregation have not met clinical expectations, posing a substantial obstacle in the development of drugs for AD. Recently, artificial intelligence (AI), computational biology (CB), and systems biology (SB) have emerged as promising methodologies in AD research. Their capacity to analyze extensive and varied datasets facilitates the identification of intricate patterns, thereby enriching our comprehension of AD pathology. This paper provides a comprehensive examination of the utilization of AI, CB, and SB in the diagnosis of AD, including the use of imaging omics for early detection, drug discovery methods such as lecanemab, and complementary therapies like phototherapy. This review offers novel perspectives and potential avenues for further research in the realm of translational AD studies.
3.Baroreflex Control of Heart Rate in Mice Overexpressing Human SOD1: Functional Changes in Central and Vagal Efferent Components.
Jin CHEN ; He GU ; Robert D WURSTER ; Zixi CHENG
Neuroscience Bulletin 2019;35(1):91-97
Excessive reactive oxygen species (ROS) (such as the superoxide radical) are commonly associated with cardiac autonomic dysfunctions. Though superoxide dismutase 1 (SOD1) overexpression may protect against ROS damage to the autonomic nervous system, superoxide radical reduction may change normal physiological functions. Previously, we demonstrated that human SOD1 (hSOD1) overexpression does not change baroreflex bradycardia and tachycardia but rather increases aortic depressor nerve activity in response to arterial pressure changes in C57B6SJL-Tg (SOD1)2 Gur/J mice. Since the baroreflex arc includes afferent, central, and efferent components, the objective of this study was to determine whether hSOD1 overexpression alters the central and vagal efferent mediation of heart rate (HR) responses. Our data indicate that SOD1 overexpression decreased the HR responses to vagal efferent nerve stimulation but did not change the HR responses to aortic depressor nerve (ADN) stimulation. Along with the previous study, we suggest that SOD1 overexpression preserves normal baroreflex function but may differentially alter the functions of the ADN, vagal efferents, and central components. While SOD1 overexpression likely enhanced ADN function and the central mediation of bradycardia, it decreased vagal efferent control of HR.
Animals
;
Baroreflex
;
physiology
;
Blood Pressure
;
physiology
;
Bradycardia
;
metabolism
;
Heart Rate
;
physiology
;
Humans
;
Mice, Transgenic
;
Superoxide Dismutase-1
;
metabolism
;
Vagus Nerve
;
metabolism

Result Analysis
Print
Save
E-mail