1.Efficient expression and biological activity characterization of human potassium channel KV3.1 in an Escherichia coli cell-free protein synthesis system.
Zitong ZHAO ; Tianqi ZHOU ; Yunyang SONG ; Fanghui WU ; Yifeng YIN ; Yanli LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):1000-1006
Objective This study aims to achieve high-yield functional expression of the human voltage-gated potassium channel KV3.1 using an Escherichia coli cell-free protein synthesis system, thereby providing a novel synthetic approach for drug screening, structural analysis and functional characterization of KV3.1. Methods KV3.1 was expressed in an Escherichia coli cell-free protein synthesis system for 10 hours in the presence of peptide surfactant A6K. The secondary structure of KV3.1 was analyzed by circular dichroism spectroscopy. The potassium channel activity of the recombinant protein liposome KV3.1-A6K was investigated using fluorescent dyes Oxonol VI as indicators, which are capable of reflecting alterations in membrane potential. Results Soluble KV3.1 protein was successfully synthesized, achieving a purified yield of up to 1.2 mg/mL via an Escherichia coli cell-free protein synthesis system. Circular dichroism spectroscopy revealed that KV3.1 exhibited characteristic α-helical secondary structures. Membrane potential fluorescence assays demonstrated that the KV3.1-A6K proteoliposomes, which were reconstructed with surfactant peptide A6K, exhibited remarkable potassium ion permeability. Conclusion This study successfully achieved high-yield expression of human KV3.1 with activity using an Escherichia coli-based cell-free protein synthesis system. This innovative method not only significantly enhances the expression yield of KV3.1, but also maintains its functional activity, thereby establishing a novel and efficient synthetic platform for drug screening and advancing our understanding of structure-function relationships in KV3.1 research.
Humans
;
Escherichia coli/metabolism*
;
Shaw Potassium Channels/biosynthesis*
;
Cell-Free System
;
Circular Dichroism
;
Protein Biosynthesis
;
Recombinant Proteins/metabolism*
;
Membrane Potentials
;
Shab Potassium Channels
2.Targeting the JAK2-STAT3-UCHL3-ENO1 axis suppresses glycolysis and enhances the sensitivity to 5-FU chemotherapy in TP53-mutant colorectal cancer.
Haisong XIN ; Zitong ZHAO ; Shichao GUO ; Ruoxi TIAN ; Liying MA ; Yang YANG ; Lianmei ZHAO ; Guanglin WANG ; Baokun LI ; Xuhua HU ; Yongmei SONG ; Guiying WANG
Acta Pharmaceutica Sinica B 2025;15(5):2529-2544
Approximately 60% of colorectal cancer (CRC) patients exhibit TP53 mutations, which are strongly associated with tumor progression, chemotherapy resistance, and an unfavorable prognosis. However, targeting p53 has historically been challenging, and currently, there are no approved p53-based therapeutics for clinical use worldwide. In this study, we discovered that ubiquitin carboxyl terminal hydrolase L3 (UCHL3) plays a crucial role in high-level glycolysis, enhanced stem-like properties, and 5-fluorouracil (5-FU) chemoresistance in TP53-mutant CRC by exerting its deubiquitinating enzyme activity to stabilize α-enolase (ENO1) protein. Notably, we identified a newly Food and Drug Administration (FDA)-approved drug, pacritinib, that potently suppresses UCHL3 expression by blocking the janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway in TP53-mutant CRC. Furthermore, Pacritinib was demonstrated to effectively inhibit glycolysis and improve the sensitivity to 5-FU chemotherapy in TP53-mutant CRC. Our findings suggest that targeting the JAK2-STAT3-UCHL3-ENO1 axis is a promising strategy to suppress glycolysis and enhance the efficacy of 5-FU chemotherapy in TP53-mutant CRC. Pacritinib shows potential for clinical application in the treatment of TP53-mutant CRC.
3.Expert consensus on imaging diagnosis and analysis of early correction of childhood malocclusion.
Zitong LIN ; Chenchen ZHOU ; Ziyang HU ; Zuyan ZHANG ; Yong CHENG ; Bing FANG ; Hong HE ; Hu WANG ; Gang LI ; Jun GUO ; Weihua GUO ; Xiaobing LI ; Guangning ZHENG ; Zhimin LI ; Donglin ZENG ; Yan LIU ; Yuehua LIU ; Min HU ; Lunguo XIA ; Jihong ZHAO ; Yaling SONG ; Huang LI ; Jun JI ; Jinlin SONG ; Lili CHEN ; Tiemei WANG
International Journal of Oral Science 2025;17(1):21-21
Early correction of childhood malocclusion is timely managing morphological, structural, and functional abnormalities at different dentomaxillofacial developmental stages. The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion. This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence, aiming to provide general guidance on appropriate imaging examination selection, comprehensive and accurate imaging assessment for early orthodontic treatment patients.
Humans
;
Malocclusion/diagnostic imaging*
;
Child
;
Consensus
4.MiR-3653 blocks autophagy to inhibit epithelial-mesenchymal transition in breast cancer cells by targeting the autophagy-regulatory genes ATG12 and AMBRA1.
Huachen SONG ; Zitong ZHAO ; Liying MA ; Bailin ZHANG ; Yongmei SONG
Chinese Medical Journal 2023;136(17):2086-2100
BACKGROUND:
Metastasis is the main cause of tumor-associated death and mainly responsible for treatment failure of breast cancer. Autophagy accelerates tumor metastasis. In our work, we aimed to investigate the possibility of microRNAs (miRNAs) which participate in the regulation of autophagy to inhibit tumor metastasis.
METHODS:
MiRNA array and comprehensive analysis were performed to identify miRNAs which participated in the regulation of autophagy to inhibit tumor metastasis. The expression levels of miR-3653 in breast cancer tissues and cells were detected by quantitative real-time polymerase chain reaction. In vivo and in vitro assays were conducted to determine the function of miR-3653. The target genes of miR-3653 were detected by a dual luciferase reporter activity assay and Western blot. The relationship between miR-3653 and epithelial-mesenchymal transition (EMT) was assessed by Western blot. Student's t -test was used to analyze the difference between any two groups, and the difference among multiple groups was analyzed with one-way analysis of variance and a Bonferroni post hoc test.
RESULTS:
miR-3653 was downregulated in breast cancer cells with high metastatic ability, and high expression of miR-3653 blocked autophagic flux in breast cancer cells. Clinically, low expression of miR-3653 in breast cancer tissues (0.054 ± 0.013 vs . 0.131 ± 0.028, t = 2.475, P = 0.014) was positively correlated with lymph node metastasis (0.015 ± 0.004 vs . 0.078 ± 0.020, t = 2.319, P = 0.023) and poor prognosis ( P < 0.001). miR-3653 ameliorated the malignant phenotypes of breast cancer cells, including proliferation, migration (MDA-MB-231: 0.353 ± 0.013 vs . 1.000 ± 0.038, t = 16.290, P < 0.001; MDA-MB-468: 0.200 ± 0.014 vs . 1.000 ± 0.043, t = 17.530, P < 0.001), invasion (MDA-MB-231: 0.723 ± 0.056 vs . 1.000 ± 0.035, t = 4.223, P = 0.013; MDA-MB-468: 0.222 ± 0.016 vs . 1.000 ± 0.019, t = 31.050, P < 0.001), and colony formation (MDA-MB-231: 0.472 ± 0.022 vs . 1.000 ± 0.022, t = 16.620, P < 0.001; MDA-MB-468: 0.650 ± 0.040 vs . 1.000 ± 0.098, t = 3.297, P = 0.030). The autophagy-associated genes autophagy-related gene 12 ( ATG12 ) and activating molecule in beclin 1-regulated autophagy protein 1 ( AMBRA1 ) are target genes of miR-3653. Further studies showed that miR-3653 inhibited EMT by targeting ATG12 and AMBRA1 .
CONCLUSIONS
Our findings suggested that miR-3653 inhibits the autophagy process by targeting ATG12 and AMBRA1 , thereby inhibiting EMT, and provided a new idea and target for the metastasis of breast cancer.
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition/genetics*
;
MicroRNAs/metabolism*
;
Autophagy/genetics*
;
Genes, Regulator
;
Gene Expression Regulation, Neoplastic/genetics*
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Neoplasms/genetics*
5.Repurposed benzydamine targeting CDK2 suppresses the growth of esophageal squamous cell carcinoma.
Yubing ZHOU ; Xinyu HE ; Yanan JIANG ; Zitong WANG ; Yin YU ; Wenjie WU ; Chenyang ZHANG ; Jincheng LI ; Yaping GUO ; Xinhuan CHEN ; Zhicai LIU ; Jimin ZHAO ; Kangdong LIU ; Zigang DONG
Frontiers of Medicine 2023;17(2):290-303
Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer death worldwide. It is urgent to develop new drugs to improve the prognosis of ESCC patients. Here, we found benzydamine, a locally acting non-steroidal anti-inflammatory drug, had potent cytotoxic effect on ESCC cells. Benzydamine could suppress ESCC proliferation in vivo and in vitro. In terms of mechanism, CDK2 was identified as a target of benzydamine by molecular docking, pull-down assay and in vitro kinase assay. Specifically, benzydamine inhibited the growth of ESCC cells by inhibiting CDK2 activity and affecting downstream phosphorylation of MCM2, c-Myc and Rb, resulting in cell cycle arrest. Our study illustrates that benzydamine inhibits the growth of ESCC cells by downregulating the CDK2 pathway.
Humans
;
Benzydamine
;
Esophageal Neoplasms/drug therapy*
;
Esophageal Squamous Cell Carcinoma/drug therapy*
;
Molecular Docking Simulation
;
Phosphorylation
;
Cell Proliferation
;
Cell Line, Tumor
;
Apoptosis
;
Cyclin-Dependent Kinase 2
6.Acid-switchable nanoparticles induce self-adaptive aggregation for enhancing antitumor immunity of natural killer cells.
Xiangshi SUN ; Xiaoxuan XU ; Jue WANG ; Xinyue ZHANG ; Zitong ZHAO ; Xiaochen LIU ; Guanru WANG ; Lesheng TENG ; Xia CHEN ; Dangge WANG ; Yaping LI
Acta Pharmaceutica Sinica B 2023;13(7):3093-3105
Deficiency of natural killer (NK) cells shows a significant impact on tumor progression and failure of immunotherapy. It is highly desirable to boost NK cell immunity by upregulating active receptors and relieving the immunosuppressive tumor microenvironment. Unfortunately, mobilization of NK cells is hampered by poor accumulation and short retention of drugs in tumors, thus declining antitumor efficiency. Herein, we develop an acid-switchable nanoparticle with self-adaptive aggregation property for co-delivering galunisertib and interleukin 15 (IL-15). The nanoparticles induce morphology switch by a decomposition-metal coordination cascade reaction, which provides a new methodology to trigger aggregation. It shows self-adaptive size-enlargement upon acidity, thus improving drug retention in tumor to over 120 h. The diameter of agglomerates is increased and drug release is effectively promoted following reduced pH values. The nanoparticles activate both NK cell and CD8+ T cell immunity in vivo. It significantly suppresses CT26 tumor in immune-deficient BALB/c mice, and the efficiency is further improved in immunocompetent mice, indicating that the nanoparticles can not only boost innate NK cell immunity but also adaptive T cell immunity. The approach reported here provides an innovative strategy to improve drug retention in tumors, which will enhance cancer immunotherapy by boosting NK cells.
7.Research progress in the correlation between reproductive tract microbiota and intrauterine adhesion.
Zitong ZHAO ; Xuetao MAO ; Yi ZHENG ; Ying LIU ; Siyi ZHAO ; Shuoyi YAO ; Dabao XU ; Xingping ZHAO
Journal of Central South University(Medical Sciences) 2022;47(11):1495-1503
Intrauterine adhesion (IUA) is caused by damage of the basal layer of endometrium, which leads to fibrosis of the endometrium and the formation of adhesion, resulting in partial or complete occlusion of the uterine cavity, abnormal menstruation, infertility or recurrent miscarriage. The prevalence of IUA in women has been increasing in recent years, and the high recurrence rate of moderate to severe IUA makes IUA treatment more challenging. Iatrogenic endometrial injury is the main cause of IUA. However, the incidence of IUA and the severity of IUA vary among patients who have received similar uterine operations, suggesting that there may be other synergistic factors in the development of IUA. There is a certain correlation between the pathogenesis and the microbiota of the gential tract. In many IUA patients, it has been observed that the probiotics such as Lactobacillus in the vagina is significant reduced, and the pathogenic bacteria such as Gardnerella and Prevotella are excessive growth. The reproductive tract microbiota can be involved in the development and progression of IUA via impacting immune function and metabolism.
Humans
;
Female
8.Correlation Between STK11 Gene Mutation and Immunotherapy of Non-small Cell Lung Cancer
Siyu XIA ; Zitong ZHAO ; Li LI
Cancer Research on Prevention and Treatment 2022;49(8):850-854
Lung cancer is one of the most common malignant tumors. Globally, the incidence and mortality of lung cancer are very high and on the rise. In recent years, immune checkpoint inhibitors (ICIs) have a significant survival advantage in treating advanced NSCLC. However, for NSCLC patients with positive driver genes, ICIs are not effective. But some tumor suppressor genes have varying degrees of impact on immunotherapy through mutations or deletions. Among them, serine/threonine kinase 11 (STK11) gene mutations are closely related to PD-1/PD-L1 ICIs. Studies have found that STK11 mutations are related to reduced immune cell infiltration, low PD-L1 expression and poor response to PD-L1 inhibition. This article reviews the research progress of the correlation between STK11 gene mutation and immunotherapy on NSCLC.
9.Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer.
Lei FANG ; Zitong ZHAO ; Jue WANG ; Ping XIAO ; Xiangshi SUN ; Yaping DING ; Pengcheng ZHANG ; Dangge WANG ; Yaping LI
Acta Pharmaceutica Sinica B 2022;12(1):353-363
Nucleic acid drugs are highly applicable for cancer immunotherapy with promising therapeutic effects, while targeting delivery of these drugs to disease lesions remains challenging. Cationic polymeric nanoparticles have paved the way for efficient delivery of nucleic acid drugs, and achieved stimuli-responsive disassembly in tumor microenvironment (TME). However, TME is highly heterogeneous between individuals, and most nanocarriers lack active-control over the release of loaded nucleic acid drugs, which will definitely reduce the therapeutic efficacy. Herein, we have developed a light-controllable charge-reversal nanoparticle (LCCN) with controlled release of polyinosinic-polycytidylic acid [Poly(I:C)] to treat triple negative breast cancer (TNBC) by enhanced photodynamic immunotherapy. The nanoparticles keep suitably positive charge for stable loading of Poly(I:C), while rapidly reverse to negative charge after near-infrared light irradiation to release Poly(I:C). LCCN-Poly(I:C) nanoparticles trigger effective phototoxicity and immunogenic cell death on 4T1 tumor cells, elevate antitumor immune responses and inhibit the growth of primary and abscopal 4T1 tumors in mice. The approach provides a promising strategy for controlled release of various nucleic acid-based immune modulators, which may enhance the efficacy of photodynamic immunotherapy against TNBC.
10.Effects of high-flow airway humidification in patients with dysphagia after tracheotomy
Delian AN ; Hongmei WEN ; Ziyang XU ; Zitong HE ; Qiongmei CHEN ; Lyuyu ZHAO ; Zulin DOU ; Zhiming TANG
Chinese Journal of Physical Medicine and Rehabilitation 2020;42(10):882-885
Objective:To explore the effect of high-flow airway humidification on aspiration and residues in cases of dysphagia after a tracheotomy.Methods:Seventeen persons with dysphagia after a tracheotomy were asked to swallow 5ml of a thick liquid when their tracheal cannula was either connected to a high-flow airway humidification system or blocked, or the cuff was empty or full. Endoscopic evaluation was then used to grade the residue and aspiration in the different conditions.Results:There were significant differences in the residuals grading and aspiration among the four conditions. The average penetration-aspiration scale grade was significantly lower when the subject was connected to high-flow airway humidification than in the other three conditions. The grade of residuals was also significantly lower.Conclusion:High-flow airway humidification can effectively improve the swallowing of persons with dysphagia after a tracheotomy.

Result Analysis
Print
Save
E-mail