1.Chemical components of Magnoliae Officinalis Cortex of different origins and with different tree ages before and after being processed with ginger juice:a qualitative and quantitative analysis.
Jia-Qi LI ; Zhen-Zhen XUE ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(9):2435-2454
This study aimed to investigate the impact of ginger juice on chemical profile of Magnoliae Officinalis Cortex(MOC) when they were processed together. Ultra-high-performance liquid chromatography coupled to quadrupole-orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used for qualitative analysis of the chemical component of MOC samples before and after being processed with ginger juice. UPLC was performed to observe the content variation of eight main components in processed MOC. A total of 174 compounds were identified or tentatively deduced from processed and unprocessed MOC samples according to MS data obtained in positive and negative ion mode. After MOC was processed with ginger juice, the peak areas of most phenolics increased, while the peak areas of most phenylethanoid glycosides decreased; as for neolignans, oxyneolignans, other lignans and alkaloids, changes in the peak area were variable, and the peak areas of terpenoid-lignans varied little. Additionally, gingerols and diarylheptanoids were only detected in the processed MOC sample. The contents of syringin, magnoloside A, and magnoloside B decreased significantly in the processed MOC sample while no significant difference was observed in the contents of magnoflorine, magnocurarine, honokiol, obovatol, and magnolol. This study comprehensively explored the content variation of chemical components in processed and unprocessed MOC samples derived from different regions and with different tree ages using UPLC and UHPLC-Q-Orbitrap HRMS, and summarized the variation characteristics of various compounds. The results provide a data foundation for further research on pharmacodynamic substances of MOC processed with ginger juice.
Ginger
;
Trees
;
Chromatography, High Pressure Liquid/methods*
;
Alkaloids
;
Lignans/analysis*
2.Processing Magnoliae Officinalis Cortex with ginger juice: process optimization based on AHP-CRITIC weighting method and composition changes after processing.
Yu-Fang QI ; Xing-Chen FAN ; Si-Chen WANG ; Yu-An SU ; Ke-Wei ZHANG ; Chun-Qin MAO ; Tu-Lin LU
China Journal of Chinese Materia Medica 2023;48(14):3806-3814
The weight coefficients of appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol were determined by analytic hierarchy process(AHP), criteria importance though intercrieria correlation(CRITIC), and AHP-CRITIC weighting method, and the comprehensive scores were calculated. The effects of ginger juice dosage, moistening time, proces-sing temperature, and processing time on the quality of Magnoliae Officinalis Cortex(MOC) were investigated, and Box-Behnken design was employed to optimize the process parameters. To reveal the processing mechanism, MOC, ginger juice-processed Magnoliae Officinalis Cortex(GMOC), and water-processed Magnoliae Officinalis Cortex(WMOC) were compared. The results showed that the weight coefficients of the appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol determined by AHP-CRITIC weighting method were 0.134, 0.287, and 0.579, respectively. The optimal processing parameters of GMOC were ginger juice dosage of 8%, moistening time of 120 min, and processing at 100 ℃ for 7 min. The content of syringoside and magnolflorine in MOC decreased after processing, and the content of honokiol and magnolol followed the trend of GMOC>MOC>WMOC, which suggested that the change in clinical efficacy of MOC after processing was associated with the changes of chemical composition. The optimized processing technology is stable and feasible and provides references for the modern production and processing of MOC.
Ginger
;
Magnolia/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Biphenyl Compounds/chemistry*
;
Lignans/chemistry*
3.Clinical effect of acupoint application with turmeric blistering moxibustion plaster on post-stroke hemiplegic shoulder pain.
Zhuang-Miao LI ; Wen-Juan YAN ; Fang LIU ; Xia LI ; Xiu-Xia LI ; Meng-Ting YU
Chinese Acupuncture & Moxibustion 2023;43(12):1373-1378
OBJECTIVES:
To observe the effects of acupoint application with turmeric blistering moxibustion plaster on pain, shoulder range of motion (ROM) and upper limb motor function in the patients with post-stroke hemiplegic shoulder pain (PSHSP).
METHODS:
Eighty-two patients with PSHSP were randomly divided into an observation group (41 cases, 1 case was eliminated, 4 cases dropped out) and a control group (41 cases, 2 cases were eliminated and 2 cases dropped out). The routine treatment, nursing care and rehabilitation training were performed in the control group. On the basis of the intervention as the control group, in the observation group, the turmeric blistering moxibustion plaster was applied to bilateral ashi points, Jianyu (LI 15), Jianliao (TE 14), Binao (LI 14), Shousanli (LI 10) and Hegu (LI 4), once a day, remained for 6 hours each time. This moxibustion therapy was operated 5 times weekly, one course of treatment consisted of 2 weeks and 2 courses were required. Separately, before treatment and after 2 and 4 weeks of treatment, the score of visual analogue scale (VAS), shoulder ROM and the score of upper limbs in Fugl-Meyer assessment (U-FMA) were observed in the two groups.
RESULTS:
VAS scores were lower (P<0.05), ROM in shoulder flexion, abduction, internal rotation and external rotation was larger (P<0.05), and U-FMA scores were higher (P<0.05) after 2 and 4 weeks of treatment when compared with those before treatment in the two groups. After 4 weeks of treatment, VAS score decreased (P<0.05), and ROM in shoulder flexion, abduction, internal rotation, external rotation and U-FMA score increased (P<0.05) in comparison with those after 2 weeks of treatment in either group. In the observation group, VAS scores were dropped (P<0.05) after 2 and 4 weeks of treatment respectively, and ROM of shoulder flexion and abduction enlarged after 2 weeks of treatment (P<0.05) when compared with those in the control group. After 4 weeks of treatment, ROM in shoulder flexion, abduction, internal rotation and external rotation in the observation group was larger (P<0.05) and U-FMA score was higher (P<0.05) than those in the control group.
CONCLUSIONS
Acupoint application with turmeric blistering moxibustion plaster may effectively reduce the degree of shoulder pain and improve the shoulder range of motion and the upper limb motor function in the patients with post-stroke hemiplegic shoulder pain.
Humans
;
Shoulder
;
Moxibustion
;
Shoulder Pain/therapy*
;
Acupuncture Points
;
Curcuma
;
Hemiplegia/therapy*
;
Treatment Outcome
4.Material basis and mechanism of Curcuma longa tuberous roots with and without vinegar processing in treating primary dysmenorrhea.
Ying PENG ; Bao-Hua DONG ; Yun-Xiu JIANG ; Jie WU ; Ma-Yi-Jie CAO ; Chang-Jiang HU ; Run-Chun XU ; Zhi-Min CHEN
China Journal of Chinese Materia Medica 2023;48(3):649-659
Liquid chromatography-mass spectrometry was employed to analyze the chemical components in Curcuma longa tuberous roots(HSYJ), C. longa tuberous roots processed with vinegar(CHSYJ), and rat serum after the administration. The active components of HSYJ and CHSYJ absorbed in serum were identified based on the secondary spectrum of database and literature. The targets of primary dysmenorrhea was screened out from database. The protein-protein interaction network analysis, gene ontology(GO) functional annotation, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed for the common targets shared by the drug active components in serum and primary dysmenorrhea, and the component-target-pathway network was constructed. AutoDock was used to conduct molecular docking between the core components and targets. A total of 44 chemical components were identified from HSYJ and CHSYJ, including 18 absorbed in serum. On the basis of network pharmacology, we identified 8 core components(including procurcumenol, isobutyl p-hydroxybenzoate, ferulic acid, and zedoarondiol) and 10 core targets \[including interleukin-6(IL-6), estrogen receptor 1(ESR1), and prostaglandin-endoperoxide synthase 2(PTGS2)\]. The core targets were mainly distributed in the heart, liver, uterus, and smooth muscle. The molecular docking results showed that the core components were well bound to the core targets, indicating that HSYJ and CHSYJ may exert therapeutic effect on primary dysmenorrhea via estrogen, ovarian steroidogenesis, tumor necrosis factor(TNF), hypoxia-inducible factor-1(HIF-1), IL-17 and other signaling pathways. This study clarifies the HSYJ and CHSYJ components absorbed in serum, as well as the corresponding mechanism, providing a reference for further elucidating the therapeutic material basis and clinical application of HSYJ and CHSYJ.
Female
;
Humans
;
Animals
;
Rats
;
Acetic Acid
;
Curcuma
;
Dysmenorrhea
;
Molecular Docking Simulation
;
Tumor Necrosis Factor-alpha
;
Cyclooxygenase 2
5.Research progress in chemical constituents, pharmacological effects, and clinical application of Curcuma wenyujin and prediction of its quality markers.
Xing-Chen LI ; Li-Yan YIN ; Hong CAI ; Xin-Yi LI ; Xiao-Ying JI ; Yi-Ying ZENG ; Zhao-Wu ZENG ; Tian XIE
China Journal of Chinese Materia Medica 2023;48(20):5419-5437
Curcuma wenyujin, as one of the eight Daodi-herbs in Zhejiang province, is widely used. It has the effects of eliminating stasis and dissipating mass, moving Qi and activating blood, and clearing heart and relieving depression. Modern studies have shown that it has anti-tumor, anti-inflammatory, anti-oxidation, anti-thrombus and liver-protecting effects and mainly contains sesquiterpenoids, monoterpenoids, diterpenoids, and curcumins. This paper reviews the research progress in the chemical constituents and pharmacological effects of C. wenyujin in the last decade, discusses the modern clinical applications combined with the traditional efficacy, and predicts its quality markers(Q-markers) from plant consanguinity, medicinal properties, efficacy, processing and measurability of chemical components based on the theory of Q-markers, so as to provide a reference for the establishment of a scientific quality evaluation system and the research and application of this herb in the future.
Anti-Inflammatory Agents
;
Curcuma/chemistry*
;
Liver
6.Rapid identification of geographic origins of Zingiberis Rhizoma by NIRS combined with chemometrics and machine learning algorithms.
Dai-Xin YU ; Sheng GUO ; Xia ZHANG ; Hui YAN ; Zhen-Yu ZHANG ; Hai-Yang LI ; Jian YANG ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2022;47(17):4583-4592
In this study, 280 batches of Zingiberis Rhizoma samples from nine producing areas were analyzed to obtain infrared spectral information based on near-infrared spectroscopy(NIRS). Pluralistic chemometrics such as principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA), orthogonal partial least squares-discriminant analysis(OPLS-DA), K-nearest neighbors(KNN), support vector machine(SVM), random forest(RF), artificial neural network(ANN), and gradient boosting(GB) were applied for tracing of origins. The results showed that the discriminative accuracy of the spectral preprocessing by standard normal variate transformation coupled with the first derivative was 93.9%, which could be used for the construction of the discrimination model. PCA and PLS-DA score plots showed that samples from Shandong, Sichuan, Yunnan, and Guizhou could be effectively distinguished, but the remaining samples were partially overlapped. As revealed by the analysis results by machine learning algorithms, the AUC values of KNN, SVM, RF, ANN, and GB algorithms were 0.96, 0.99, 0.99, 0.99, and 0.98, respectively, with overall prediction accuracies of 83.3%, 89.3%, 90.5%, 91.7%, and 89.3%. It indicated that the developed model was reliable and the machine learning algorithm combined with NIRS for origin identification was sufficiently feasible. OPLS-DA showed that Zingiberis Rhizoma from Sichuan(genuine producing areas) could be significantly distinguished from other regions, with good discriminative accuracy, suggesting that the NIRS established in this study combined with chemometrics can be used for the identification of Zingiberis Rhizoma from Sichuan. This study established a rapid and nondestructive identification and reliable data analysis method for origin identification of Zingiberis Rhizoma, which is expected to provide a new idea for the origin tracing of Chinese medicinal materials.
Algorithms
;
Chemometrics
;
China
;
Ginger
;
Least-Squares Analysis
;
Plant Extracts
;
Principal Component Analysis
;
Support Vector Machine
7.Genetic diversity and population structure of germplasm resources of Amomum villosum based on SSR markers.
Wen-Xiu LI ; Jin-Liang LI ; Jun-Jun HE ; Hua-Lin ZHANG ; Ping LUO ; Ying WEI ; Mei-Ting ZHAO
China Journal of Chinese Materia Medica 2022;47(17):4618-4626
Amomum villosum, serving as an important medicinal material, is complex in the genetic background of germplasm resources. Exploring the genetic diversity and genetic relationship of germplasm resources is conducive to clarifying the germplasm source and genetic background of A. villosum, so as to improve the efficiency of parent selection and variety breeding of A. villosum. Seventy-one pairs of SSR primers were used for PCR amplification of 84 A. villosum samples by polyacrylamide gel electrophoresis. Fifty-four pairs of SSR primers with high polymorphism were screened out for the analysis of genetic diversity. The results showed that 293 alleles were detected from 84 germplasm resources by 54 pairs of SSR primers, with an average of 5.32 alleles for each pair of primers, and a variation range of 3-8, and the primer AVL12 marked the highest number of alleles. The PIC value of each locus varied from 0.068 7 to 0.828 9, with an average of 0.529 9, and the highest was marked by AVL24. The genetic diversity of A. villosum was the highest in Yunnan, followed by Guangxi, and the lowest was found in Guangdong. The population structure analysis and cluster analysis showed that the samples were classified into two groups. In terms of origin, samples from Yunnan and Guangxi had a close genetic relationship, and there was no obvious differentiation of A, villosum resources from different origins. In this study, 54 pairs of SSR markers were used to analyze the genetic diversity and population structure of 84 germplasm resources, which can reflect the genetic relationship between A. villosum samples from different germplasm sources and different populations, thus providing a theoretical basis for the collection, research, and breeding of A. villosum resources.
Alleles
;
Amomum/genetics*
;
China
;
Genetic Variation
;
Microsatellite Repeats/genetics*
;
Plant Breeding
8.Terpenoids from fruits of Amomum villosum and their hypoglycemic activity.
Min DING ; Sheng-Li WU ; Xiao-Feng HE ; Xue-Mei ZHANG ; Chang-An GENG
China Journal of Chinese Materia Medica 2022;47(21):5849-5854
Eight terpenoids were isolated from the fruits of Amomum villosum by silica gel, Sephadex LH-20, Rp-C_(18), MCI GEL CHP20 P column chromatography, preparative TLC, and HPLC. Their structures were identified by HR-ESI-MS, ~1H and ~(13)C-NMR, IR, UV, [α]_D, and ECD spectroscopic data as kravanhin A 3-O-β-D-glucopyranoside(1), kravanhin B(2), 6-eudesmene-1β,4β-diol(3), oplodiol(4), vicodiol(5),(1R,2S,4R,7S)-vicodiol 9-O-β-D-glucopyranoside(6),(1R,2S,4S,5R)-angelicoidenol 2-O-β-D-glucopyranoside(7), and(1S,2S,4R,6S)-bornane-2,6-diol 2-O-β-D-glucopyranoside(8). Compound 1 was a new compound, and compounds 2-5 were isolated from A. villosum for the first time. Their hypoglycemic activity was tested based on STC-1 cell model and two enzymatic models(GPa and PTP1 B). The results showed that compounds 1, 7, and 8 could stimulate GLP-1 with the secretion rates of 692.8%, 398.6%, and 483.3% at 25.0 μmol·L~(-1), and compound 6 showed inhibitory activity against GPa with an IC_(50) value of 78.6 μmol·L~(-1).
Fruit/chemistry*
;
Terpenes/analysis*
;
Amomum
;
Hypoglycemic Agents/analysis*
;
Chromatography, High Pressure Liquid
9.Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review.
Zeinab VAFAEIPOUR ; Bibi Marjan RAZAVI ; Hossein HOSSEINZADEH
Journal of Integrative Medicine 2022;20(3):193-203
Metabolic syndrome (MS) involves people with the following risk factors: obesity, hypertension, high glucose level and hyperlipidemia. It can increase the risk of heart disease, stroke and type 2 diabetes mellitus. The prevalence of MS in the world's adult population is about 20%-25%. Today, there is much care to use medicinal plants. Turmeric (Curcuma longa) as well as curcumin which is derived from the rhizome of the plant, has been shown beneficial effects on different components of MS. Thus, the purpose of this manuscript was to introduce different in vitro, in vivo and human studies regarding the effect of turmeric and its constituent on MS. Moreover, different mechanisms of action by which this plant overcomes MS have been introduced. Based on studies, turmeric and its bioactive component, curcumin, due to their anti-inflammatory and antioxidant properties, have antidiabetic effects through increasing insulin release, antihyperlipidemic effects by increasing fatty acid uptake, anti-obesity effects by decreasing lipogenesis, and antihypertensive effects by increasing nitric oxide. According to several in vivo, in vitro and human studies, it can be concluded that turmeric or curcumin has important values as a complementary therapy in MS. However, more clinical trials should be done to confirm these effects.
Curcuma
;
Curcumin/therapeutic use*
;
Diabetes Mellitus, Type 2/drug therapy*
;
Humans
;
Metabolic Syndrome/drug therapy*
;
Plant Extracts/therapeutic use*
;
Rhizome
10.Efficacy-related substances of blood-activating and stasis-resolving medicinals derived from Curcuma plants: a review.
Yu-Wen QIN ; Cheng-Hao FEI ; Wei ZHANG ; Yu LI ; Zhen XU ; Lian-Lin SU ; De JI ; Chun-Qin MAO ; Tu-Lin LU
China Journal of Chinese Materia Medica 2022;47(1):24-35
Derived from Curcuma plants, Curcumae Longae Rhizoma, Curcumae Rhizoma, Wenyujin Rhizoma Concisum, and Curcumae Radix are common blood-activating and stasis-resolving medicinals in clinical practice, which are mainly used to treat amenorrhea, dysmenorrhea, chest impediment and heart pain, and rheumatic arthralgia caused by blood stasis block. According to modern research, the typical components in medicinals derived from Curcuma plants, like curcumin, demethoxycurcumin, bisdemethoxycurcumin, curdione, germacrone, curcumol, and β-elemene, have the activities of hemorheology improvement, anti-platelet aggregation, anti-thrombosis, anti-inflammation, anti-tumor, and anti-fibrosis, thereby activating blood and resolving stasis. However, due to the difference in origin, medicinal part, processing, and other aspects, the efficacy and clinical application are different. The efficacy-related substances behind the difference have not yet been systematically studied. Thus, focusing on the efficacy-related substances, this study reviewed the background, efficacy and clinical application, efficacy-related substances, and "prediction-identification-verification" research method of blood-activating and stasis-resolving medicinals derived from Curcuma plants, which is expected to lay a theoretical basis for the future research on the "similarities and differences" of such medicinals based on integrated evidence chain and to guide the scientific and rational application of them in clinical practice.
Curcuma
;
Curcumin
;
Drugs, Chinese Herbal
;
Plant Roots
;
Platelet Aggregation
;
Rhizome

Result Analysis
Print
Save
E-mail