1.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
2.Mechanism of overexpression of lncRNA HAGLR promoting osteogenic differentiation of bone marrow mesenchymal stem cells in rats with tibial fracture
Wen WANG ; Xin-Yu CHEN ; Zi-Yi HUANG ; Yang-Liu DENG ; Hong-Wang CUI
Journal of Regional Anatomy and Operative Surgery 2024;33(6):472-478
Objective To study the expression of long noncoding RNA Homeobox D gene cluster antisense growth-associated long noncoding RNA(lncRNA HAGLR)and its downstream target genes in osteoporosis(OP)-tibial fracture(TF)rats,and to explore the effect and mechanism of lncRNA HAGLR on osteogenic differentiation of rat bone marrow mesenchymal stem cells(MSCs).Methods A total of 30 SD female rats were randomly divided into the sham group,the OP group and the OP-TF group,with 10 rats in each group.Serum alkaline phosphatase(ALP)and tartrate-resistant acid phosphatase(TRAP)levels of rats were detected by ELISA.Rats MSC cell line R7500 was induced by osteogenic differentiation induction medium and divided into the MSC group and the Osteogenic-MSC group.R7500 was individually transfected with pcDNA-HAGLR,pcDNA-NC,miR-19a-3p mimic,mimic negative control(NC mimic),miR-19a-3p inhibitor and negative control of miR-19a-3p inhibitor(NC inhibitor),and divided into corresponding groups.The dual luciferase gene report experiment was used to verify the targeting relationship between lncRNA HAGLR and miR-19a-3p and bone morphogenetic protein 2(BMP2)and miR-19a-3p.The expressions of lncRNA HAGLR and miR-19a-3p in each group were detected by qRT-PCR.The expressions of BMP2,ALP,collagen Ⅰ(COL-Ⅰ),osteocalcin(OCN),and osteopontin(OPN)were detected by Western blot.ALP staining and AR staining were used to detect the osteogenic differentiation ability of MSC.Results The serum ALP and TRAP levels in the OP group and the OP-TF group were higher than those in the sham group,and the differences were statistically significant(P<0.05).There was no significant difference in the expression levels of lncRNA HAGLR,miR-19a-3p or BMP2 of tibia tissue between the OP group and the sham group(P>0.05),while the expression levels of lncRNA HAGLR and BMP2 of tibia tissue in the OP-TF group were significantly lower than those in the sham group and the OP group(P<0.05),the expression level of miR-19a-3p of tibia tissue in the OP-TF group was higher than those in the sham group and the OP group(P<0.05).Compared with the MSC group,the expression level of lncRNA HAGLR in the Osteogenic-MSC group was significantly increased(P<0.05),while the expression of miR-19a-3p was decreased(P<0.05).The dual luciferase gene report experiment verified that lncRNA HAGLR has a targeting relationship with miR-19a-3p,and miR-19a-3p has a targeting relationship with BMP2.The expression level of miR-19a-3p in the pcDNA-HAGLR group was lower than that in the pcDNA-NC group(P<0.05).There was no significant difference in the expression level of lncRNA HAGLR between the miR-19a-3p mimic group and the NC mimic group(P>0.05).Compared with the NC mimic group,the expression level of BMP2 protein in the miR-19a-3p mimic group was decreased(P<0.05),while the expression level of miR-19a-3p was increased(P<0.05).The cells in the pcDNA-HAGLR group had stronger osteogenic differentiation ability and higher ALP activity than those in the pcDNA-NC group(P<0.05).The cells in the miR-19a-3p inhibitor group had stronger osteogenic differentiation ability and higher ALP activity than those in the NC inhibitor group(P<0.05).Conclusion The expression of lncRNA HAGLR and BMP2 is decreased and the expression of miR-19a-3p is increased in rats with tibial fracture.Overexpression of lncRNA HAGLR promotes osteogenic differentiation of rat MSCs by targeting the miR-19a-3p/BMP2 axis.
3.Genomic characteristics of the Vibrio cholerae O1 group isolated from humans in Fujian Province,2008 to 2022
Zi-Li KE ; Xiao-Xuan ZHANG ; Hai-Bin XU ; Ya-Dong GAO ; Chao-Chen LUO ; Meng-Ying HUANG ; Yu-Feng QIU ; Jin-Song YANG
Chinese Journal of Zoonoses 2024;40(8):708-715
This study was aimed at understanding the genomic characteristics of the Vibrio cholerae O1 group isolated from humans in Fujian Province,to provide essential data for the molecular epidemiological study of cholera.From 2008 to 2022,16 strains of the V.cholerae O1 group from patients and carriers were collected,and antibiotic sensitivity was determined accord-ing to the minimum inhibitory concentration(MIC).The whole genome sequences obtained through second generation sequen-cing were analyzed in open source software,including snippy,Roary,and Prokka,as well as online analysis websites,inclu-ding NCBI and BacWGSTdb,for core-genome multilocus sequence typing(cgMLST),core-genome single nucleotide polymor-phism analysis(cgSNP),virulence gene analysis,drug resistance gene prediction,and pan-genomic diversity analysis.The whole genome sequences of V.cholerae were divided into five sequence types(STs),among which the newly discovered ST182 and ST1480 were the evolutionary branches of the current dominant clonal group ST75 in China,and were highly related to two strains isolated from Taiwan in 2010 and 2013,respectively.Both toxigenic strains and non-toxigenic strains carried a variety of virulence factors and showed gene variation to varying degrees.Thirteen drug resistance genes in seven categories were predicted,among which the distribution of colistin and tetracycline resistance genes was consistent with the drug resistance phenotype.Pan-ge-nomic analysis indicated that V.cholerae had an open pan-genome,and Roary cluster analysis showed higher resolution than cgMLST.In summary,V.cholerae O1 group isolates from humans in Fujian Province have polymorphisms in genome structure and function,and the newly discovered ST1480 clone group has epidemic potential.Therefore,the monitoring of such strains must be strengthened.
4.Cancer Stem Cell-derived Exosomes Promote Drug Resistance and Invasion in Colorectal Cancer Cells
Xin-Yu GAO ; Zi-Jun MAO ; Sheng-Zhe HUANG ; Gang HUANG ; Hao YANG
Chinese Journal of Biochemistry and Molecular Biology 2024;40(8):1119-1131
Cancer stem cells,a small population of cells with self-renewal and multidirectional differenti-ation potential in tumor tissues,can initiate primary tumors and mediate treatment resistance,tumor re-currence,and metastasis,but the mechanism of how they affect colorectal cancer at the cellular level is unknown.Therefore,in this study,we explored the effect of cancer stem cells and their exosomes on the malignant phenotype of colorectal cancer.First,CD 166+CD44+cancer stem cells(CSCs)were isolated from colorectal cancer tumor tissues,and then cancer stem cell-derived exosomes(CSCexo)and colorec-tal cancer SW480 cell-derived exosomes(Sexo)were extracted by ultracentrifugation.Then,exosomes were subjected to NTA particle size analysis,electron microscopic observation and identification by West-ern blotting.Subsequently,the successfully isolated CSC and CSCexo were co-cultured with colorectal cancer SW480 cells.The apoptosis rate of SW480 cells after co-culture was found to decrease from 20%to about 13%by CCK-8,apoptosis assay(P<0.01)and the invasive ability was significantly increased(P<0.001)after co-culture with CSC or CSCexo.In addition,in vivo animal experiments revealed that the tumor growth rate of the S-exo treatment group was slower than that of the CSCexo treatment group,and that CSCexo inhibited the drug efficacy of 5-FU against colorectal cancer tumors.PET/CT imaging,immunohistochemical analysis,and Western blotting experiments showed that CSCexo enhanced the up-take of the glucose analog 18F-FDG and the expression of the glycolytic enzymes HK2,PFKFB2,PKM2,and LDHA in colorectal cancer.In addition,interfering with the expression of glycolytic enzymes with siRNAs blocked the drug resistance induced by CSCexo.In summary,this study demonstrates that color-ectal cancer stem cells deliver exosomes that affect tumor glucose metabolism pathways and promote chemotherapy resistance and invasive ability,revealing the mechanism of formation and dynamic changes in the malignant tumor microenvironment.
5.Human resource efficiency and spatial distribution characterization of district-level center for disease control and prevention in city N of Jiangsu Province
Yang LI ; Yu-Meng WEI ; Yu-Qi YANG ; Wen-Jie XU ; Ming-Yao GU ; Zi-Fa HUANG ; Zhi-Hao ZHANG ; Fang WU
Chinese Journal of Health Policy 2024;17(10):52-58
Objective:To analyze the efficiency of human resource allocation and its spatial distribution characteristics of district-level Center for Disease Control and Prevention(CDC)in city N of Jiangsu Province in 2020,in order to provide a strong decision-making reference for optimizing and strengthening the CDC talent team.Methods:The efficiency of human resources of district-level CDC of City N in2020 was measured using the Super-Efficiency SBM model,and the spatial association pattern was analyzed using the natural break point classification method and Moran's index,with the visualization presented through LISA maps.Results:The overall level of human resource efficiency in district-level CDC of City N is relatively high.However,spatially,there are significant differences among the regions,showing a trend of high efficiency in the central areas and low efficiency at the ends.Moran's index and LISA maps indicate a negative spatial correlation in efficiency,with a low-high(L-H)cluster centered on Area L and a high-low(H-L)cluster centered on Area J.The high-high(H-H)cluster pattern has not yet formed,exhibiting a characteristic of interspersed high and low efficiency.Conclusions:There are regional differences in the human resource efficiency of the Disease Control Center in City N,and the spatial cluster pattern needs to be optimized.It is recommended to focus on efficiency improvement in Areas P and L,formulate appropriate policies,and promote coordinated regional development.
6.Analysis of risk factors and severity prediction of acute pancreatitis induced by pegaspargase in children
Xiaorong LAI ; Lihua YU ; Lulu HUANG ; Danna LIN ; Li WU ; Yajie ZHANG ; Juan ZI ; Xu LIAO ; Yuting YUAN ; Lihua YANG
Chinese Journal of Applied Clinical Pediatrics 2024;39(3):170-175
Objective:To analyze the risk factors for asparaginase-associated pancreatitis (AAP) in children with acute lymphoblastic leukemia (ALL) after treatment with pegaspargase and evaluate the predictive value of pediatric sequential organ failure assessment (SOFA) score, pediatric acute pancreatitis severity (PAPS) score, Ranson′s score and pediatric Ministry of Health, Labour and Welfare of Japan (JPN) score for severe AAP.Methods:Cross-sectional study.The clinical data of 328 children with ALL who received pegaspargase treatment in the Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University from January 2014 to August 2021, as well as their clinical manifestations, laboratory examinations, and imaging examinations were collected.The SOFA score at the time of AAP diagnosis, PAPS score and Ranson′s score at 48 hours after AAP diagnosis, and JPN score at 72 hours after AAP diagnosis were calculated, and their predictive value for severe AAP was evaluated by the receiver operating characteristic (ROC) curve.Results:A total of 6.7%(22/328) of children had AAP, with the median age of 6.62 years.AAP most commonly occurred in the induced remission phase (16/22, 72.7%). Three AAP children were re-exposed to asparaginase, and 2 of them developed a second AAP.Among the 22 AAP children, 16 presented with mild symptoms, and 6 with severe symptoms.The 6 children with severe AAP were all transferred to the Pediatric Intensive Care Unit (PICU). There were no significant differences in gender, white blood cell count at first diagnosis, immunophenotype, risk stratification, and single dose of pegaspargase between the AAP and non-AAP groups.The age at diagnosis of ALL in the AAP group was significantly higher than that in the non-AAP group ( t=2.385, P=0.018). The number of overweight or obese children in the AAP group was also higher than that in the non-AAP group ( χ2=4.507, P=0.034). The areas under the ROC curve of children′s JPN score, SOFA score, Ranson′s score, and PAPS score in predicting severe AAP were 0.919, 0.844, 0.731, and 0.606, respectively.The JPN score ( t=4.174, P=0.001) and the SOFA score ( t=3.181, P=0.005) showed statistically significant differences between mild and severe AAP. Conclusions:AAP is a serious complication in the treatment of ALL with combined pegaspargase and chemotherapy.Older age and overweight or obesity may be the risk factors for AAP.Pediatric JPN and SOFA scores have predictive value for severe AAP.
7.Specific DNA barcodes screening, germplasm resource identification, and genetic diversity analysis of Platycodon grandiflorum
Xin WANG ; Yue SHI ; Jin-hui MAN ; Yu-ying HUANG ; Xiao-qin ZHANG ; Ke-lu AN ; Gao-jie HE ; Zi-qi LIU ; Fan-yuan GUAN ; Yu-yan ZHENG ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(1):243-252
Platycodonis Radix is the dry root of
8.Advances in Salmonella -mediated targeted tumor therapy
Zhao-rui LÜ ; Dong-yi LI ; Yu-yang ZHU ; He-qi HUANG ; Hao-nan LI ; Zi-chun HUA
Acta Pharmaceutica Sinica 2024;59(1):17-24
italic>Salmonella has emerged as a promising tumor-targeting strategy in recent years due to its good tumor targeting ability and certain safety. In order to further optimize its therapeutic effect, scientists have tried to modify
9.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
10.The Application of Adeno-asscociated Virus in Lipid Metabolism Research and Lipid-lowering Gene Therapy
Zi-Yang YAN ; Qian-Ru WANG ; Xiao-Fei HUANG ; Chun-Yu CAO
Progress in Biochemistry and Biophysics 2024;51(9):2073-2081
Cardiovascular and cerebrovascular diseases, usually result from atherosclerosis, has the highest mortality rate globally. Lipid metabolism disorder is the main cause of atherosclerotic cardiovascular and cerebrovascular diseases, which not only lead to acute diseases such as myocardial infarction, stroke, acute pancreatitis, but also chronic kidney disease. In recent years, the advancement of gene therapy technologies has provided novel means for lipid metabolism study, and has also made it possible to cure patients with congenital lipid metabolism abnormalities. Adeno-associatd virus has a wide host range, high safety, low immunogenicity, and especially the ability of long-term stable expression in vivo, making it the preferred delivery tool for gene therapy of monogenic genetic diseases. Alipogene triprivec, also known as Glybera, was approved by the European Medicines Agency in 2012. It is the first gene therapy drug that uses recombinant AAV1 vector to directly deliver a highly active LPL protein S447X mutant to muscle cells for the treatment of patients with hereditary LPL deficiency. To enhance the targeted transduction efficiency of AAV carriers, recombinantAAV8.TBG.hLDLR utilizes the tissue tropsim of AAV8 to liver, meanwhile utilizes a liver specific thyroxine binding globulin promoter to control gene transcription, thereby achieving liver cell specific high expressionof human low-density lipoprotein receptors (LDLR). In patients with familial hypercholesterolemia,AAV8.TBG.hLDLR treatment effectively lower the level of plasma LDL for a long time, thus preventing the occurrence of atherosclerosis.Proprotein convert subunit kexin 9 (PCSK9) is secreted by liver cells. PCSK9 binds and transports LDLR to lysosomes for degradation, preventing the circulation and regeneration of LDLR, leading to accelerated degradation of LDLR and finally resulting in the accumulation of low-density lipoprotein cholesterol in plasma. Using AAV to deliver Cas9 of Staphylococcus aureus and gRNA targeting the Pcsk9 gene can knock out Pcsk9 in mouse liver, leading to a long-term significant decrease in plasma cholesterol levels in mice. Hepatocyte specific angiopoietin related protein 3 (Angptl3) is an endogenous inhibitor of LPL. Using the AAV9 mediated AncBE4max system and the dCas9 mediated single base gene editing system to introduce early termination codons, the knockout of Angptal3 in liver cells was achieved with an average knockout efficiency of 63.3%. After 2-4 weeks of administration in mice, the Angptl3 protein was completely undetectable in the peripheral blood, and serum triglycerides and total cholesterol decreased by 58% and 61%, respectively. Ring finger containing protein 130 (RNF130) is an E3 ubiquitin ligase. Research has shown that overexpression of RNF130 using AAV2/8 leads to ubiquitination degradation and redistribution of LDLR on the cell membrane, significantly reducing LDLR expression on liver cells and increasing plasma LDLC levels, while knocking out Rnf130 gene using the AAV-CRISPR system results in the opposite effect. This AAV mediated RNF130 function study proves that RNF130 is a posttranslational regulatory protein of LDLR and plays an important role in the regulation of serum LDLC. As mentioned above, recently, various lipid-lowering gene therapy drugs carried by different serotypes of adeno-associated virus have been applied in clinic or are undergoing clinical trials, and adeno-associated virus has emerging to be an important tool for lipid metabolism research.This article reviews the new progress of adeno-associated virus vectors in lipid metabolism study and lipid-lowering gene therapy.

Result Analysis
Print
Save
E-mail