1.Evaluating the impact of relative dose intensity on efficacy of trastuzumab deruxtecan for metastatic breast cancer in the real-world clinical setting.
Han Yi LEE ; Vivianne SHIH ; Jack Junjie CHAN ; Shun Zi LIONG ; Ryan Shea Ying Cong TAN ; Jun MA ; Bernard Ji Guang CHUA ; Joshua Zhi Chien TAN ; Chuan Yaw LEE ; Wei Ling TEO ; Su-Ming TAN ; Phyu NITAR ; Yoon Sim YAP ; Mabel WONG ; Rebecca DENT ; Fuh Yong WONG ; Tira J TAN
Annals of the Academy of Medicine, Singapore 2025;54(8):458-466
INTRODUCTION:
Trastuzumab deruxtecan (T-DXd) has revolutionised treatment for metastatic breast cancer (MBC). While effective, its high cost and toxicities, such as fatigue and nausea, pose challenges.
METHOD:
Medical records from the Joint Breast Cancer Registry in Singapore were used to study MBC patients treated with T-DXd (February 2021-June 2024). This study was conducted to address whether reducing dose intensity and density may have an adverse effect on treatment outcomes.
RESULTS:
Eighty-seven MBC patients were treated with T-DXd, with a median age of 59 years. At the time of data cutoff, 32.1% of patients were still receiving T-DXd. Over half (54%) of the patients received treatment with an initial relative dose intensity (RDI) of <;85%. Overall median real-world progression-free survival (rwPFS) was 8.1 months. rwPFS was similar between RDI groups (<85%: 8.7 months, <85%: 8.1 months, P=0.62). However, human epidermal growth receptor 2 (HER2)-positive patients showed significantly better rwPFS outcomes compared to HER2-low patients (8.8 versus 2.5 months, P<0.001). Only 16% with central nervous system (CNS) involvement had CNS progressive disease on treatment. No significant progression-free survival (PFS) differences were found between patients with or without CNS disease, regardless of RDI groups. Five patients (5.7%) developed interstitial lung disease (ILD), with 3 (3.4%) having grade 3 events. Two required high-dose steroids and none were rechallenged after ILD. There were no fatalities.
CONCLUSION
Our study demonstrated that reduced dose intensity and density had no significant impact on rwPFS or treatment-related toxicities. Furthermore, only 5.7% of patients developed ILD. T-Dxd provided good control of CNS disease, with 82% of patients achieving CNS disease control.
Humans
;
Female
;
Breast Neoplasms/mortality*
;
Middle Aged
;
Trastuzumab/adverse effects*
;
Aged
;
Adult
;
Singapore/epidemiology*
;
Antineoplastic Agents, Immunological/adverse effects*
;
Camptothecin/adverse effects*
;
Immunoconjugates/adverse effects*
;
Retrospective Studies
;
Progression-Free Survival
;
Receptor, ErbB-2/metabolism*
;
Neoplasm Metastasis
;
Dose-Response Relationship, Drug
;
Treatment Outcome
;
Registries
2.Mechanism of tannins from Galla chinensis cream in promoting skin wound healing in rats based on FAK/PI3K/Akt/mTOR signaling pathway.
Wen YI ; Zi-Yi YAN ; Meng-Qiong SHI ; Ying ZHANG ; Jie LIU ; Qian YI ; Hai-Ming TANG ; Yi-Wen LIU
China Journal of Chinese Materia Medica 2025;50(2):480-497
This study investigated the effects and action mechanism of tannins from Galla chinensis cream(TGCC) on the skin wound of rat tail. Male Sprague Dawley(SD) rats were randomly divided into a control group, model group, model+low-dose TGCC(50 mg per rat) group, model+high-dose TGCC group(100 mg per rat), and model+TGC+FAK inhibitor(Y15) cream(100 mg+10 mg per rat) group, with 10 rats in each group. After the rat tail skin injury model was successfully constructed, in the treatment group, corresponding drugs were applied to the wound surface, while in the control and model groups, the same amount of cream base as the TGCC group was applied by the same method. Then, sterile gauze was wrapped around the wound edge, and these operations were performed three times a day for 28 consecutive days. The wound healing status at the third, seventh, eleventh, fourteenth, twenty-first, and twenty-eighth days was recorded, and the wound healing rate and healing time were calculated. On the day after the last dose of medication, rat serum and tail skin wound tissue were collected for analyzing the activities of serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), creatinine(CREA), urea, reactive oxygen species(ROS), interferon gamma(IFN-γ), interleukin(IL)-1β, IL-6, IL-4, IL-10, tumor necrosis factor(TNF)-α, as well as catalase(CAT), glutathione(GSH), lactate dehydrogenase(LDH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC), platelet endothelial cell adhesion molecule-1(CD31), and leukocyte differentiation antigen 34(CD34) in the wound tissue of rat tail skin. Hematoxylin-eosin, Masson, and sirius red staining were used to observe the morphological changes in the wound tissue of rat tail skin. The thickness of the epidermis, the number of fibroblasts and blood vessels, and the contents of collagen fibers, typeⅠ collagen(COLⅠ), and COLⅢ were calculated. The mRNA expressions of keratin 10(KRT10), KRT14, vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), epidermal growth factor(EGF), CD31, CD34, matrix metallopeptidase-2(MMP-2), MMP-9, COLⅠ, COLⅢ, desmin, fibroblast specific protein 1(FSP1), IFN-γ, IL-1β, TNF-α, IL-4, IL-6, and IL-10 in skin wound tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expressions of KRT10, KRT14, VEGF, FGF, EGF, MMP-2, MMP-9, COLⅠ, COLⅢ, desmin, FSP1, focal adhesion kinase(FAK), phosphorylated focal adhesion kinase(p-FAK), phosphatidylin-ositol-3-kinase(PI3K), phosphorylated phosphatidylin-ositol-3-kinase(p-PI3K), protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated mammalian target of rapamycin(p-mTOR). The results manifest that TGCC can dramatically elevate the healing rate of rat tail wounds and shorten wound healing time. Besides, it can reduce serum ROS levels, the contents of MDA, MPO, and LDH in the rat skin wound tissue, as well as the serum IFN-γ, IL-1β, IL-6, and TNF-α levels and the mRNA expression levels of IFN-γ, IL-1β, IL-6, and TNF-α in the skin wound tissue. It can elevate the activities of CAT, GSH, SOD, and T-AOC in wound tissue, the IL-4 and IL-10 contents in serum, and the mRNA expressions of IL-4 and IL-10 in the wound tissue. In addition, TGGC can inhibit inflammatory cell infiltration and increase the epidermal thickness, counts of fibroblasts and blood vessels, and contents of collagen fibers, COLⅠ, and COLⅢ. Besides, TGCC can elevate the mRNA and protein expressions of epidermal differentiation markers(KRT10 and KRT14), endothelial cell markers(CD31 and CD34), angiogenesis and fibroblast proliferation, differentiation markers(VEGF, FGF, EGF, COLⅠ, COLⅢ, desmin, and FSP1), reduce the mRNA and protein expressions of gelatinases(MMP-2 and MMP-9), and increase protein expressions of p-FAK, p-PI3K, p-Akt, p-mTOR, as well as ratios of p-FAK/FAK, p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. These results suggest that TGCC can significantly facilitate skin wound healing, and its mechanism may be related to the activation of the FAK/PI3K/Akt/mTOR signaling pathway, inhibition of inflammatory cell infiltration in skin wound tissue, elevation of epidermal thickness, counts of fibroblasts and vessels, and contents of collagen fiber, COLⅠ, and COLⅢ, and reduction of MMP-2 and MMP-9 expressions, thus accelerating wound healing.
Animals
;
Male
;
Wound Healing/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Skin/metabolism*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Tannins/pharmacology*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Focal Adhesion Kinase 1/genetics*
3.Buzhong Yiqi Decoction alleviates immune injury of autoimmune thyroiditis in NOD.H-2~(h4)mice via c GAS-STING signaling pathway.
Yi-Ran CHEN ; Lan-Ting WANG ; Qing-Yang LIU ; Zhao-Han ZHAI ; Shou-Xin JU ; Xue-Ying CHEN ; Zi-Yu LIU ; Xiao YANG ; Tian-Shu GAO ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2025;50(7):1872-1880
This study aims to explore the effects of Buzhong Yiqi Decoction(BYD) on the cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)-stimulator of interferon genes(STING) signaling pathway in the mouse model of autoimmune thyroiditis(AIT) and the mechanism of BYD in alleviating the immune injury. Forty-eight NOD.H-2~(h4) mice were assigned into normal, model, low-, medium-, and high-dose BYD, and selenium yeast tablets groups(n=8). Mice of 8 weeks old were treated with 0.05% sodium iodide solution for 8 weeks for the modeling of AIT and then administrated with corresponding drugs by gavage for 8 weeks before sampling. High performance liquid chromatography was employed to measure the astragaloside Ⅳ content in BYD. Hematoxylin-eosin staining was employed to observe the pathological changes in the mouse thyroid tissue. Enzyme-linked immunosorbent assay was employed to measure the serum levels of thyroid peroxidase antibody(TPO-Ab), thyroglobulin antibody(TgAb), and interferon-γ(IFN-γ). Flow cytometry was employed to detect the distribution of T cell subsets in the spleen. The immunohistochemical method was used to detect the expression of cGAS, STING, TANK-binding kinase 1(TBK1), and interferon regulatory factor 3(IRF3). Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of markers related to the cGAS-STING signaling pathway in the thyroid tissue. The results showed that the content of astragaloside Ⅳ in BYD was(7.06±0.08) mg·mL~(-1). Compared with the normal group, the model group showed disrupted structures of thyroid follicular epithelial cells, massive infiltration of lymphocytes, and elevated levels of TgAb and TPO-Ab. Compared with the model group, the four treatment groups showed intact epithelial cells, reduced lymphocyte infiltration, and lowered levels of TgAb and TPO-Ab. Compared with the normal group, the model group showed increases in the proportions of Th1 and Th17 cells, a decrease in the proportion of Th2 cells, and an increase in the IFN-γ level. Compared with the model group, the four treatment groups presented decreased proportions of Th1 and Th17 cells and lowered levels of IFN-γ, and the medium-dose BYD group showed an increase in the proportion of Th2 cells. Compared with the normal group, the modeling up-regulated the mRNA levels of cGAS, STING, TBK1, and IRF3 and the protein levels of cGAS, p-STING, p-TBK1, and p-IRF3. Compared with the model group, the four treatment groups showed reduced levels of cGAS, STING, TBK1, and IRF3-positive products, down-regulated mRNA levels of cGAS, STING, and TBK1, and down-regulated protein levels of cGAS and p-STING. The high-dose BYD group showed down-regulations in the mRNA level of IRF3 and the protein levels of p-TBK1 and p-IRF3. The above results indicate that BYD can repair the imbalance of T cell subsets, alleviate immune injury, and reduce thyroid lymphocyte infiltration in AIT mice by inhibiting the cGAS-STING signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
Thyroiditis, Autoimmune/metabolism*
;
Mice
;
Membrane Proteins/metabolism*
;
Mice, Inbred NOD
;
Humans
;
Female
;
Nucleotidyltransferases/metabolism*
;
Male
;
Disease Models, Animal
4.Heart Yin deficiency and cardiac fibrosis: from pathological mechanisms to therapeutic strategies.
Jia-Hui CHEN ; Si-Jing LI ; Xiao-Jiao ZHANG ; Zi-Ru LI ; Xing-Ling HE ; Xing-Ling CHEN ; Tao-Chun YE ; Zhi-Ying LIU ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(7):1987-1993
Cardiac fibrosis(CF) is a cardiac pathological process characterized by excessive deposition of extracellular matrix(ECM). When the heart is damaged by adverse stimuli, cardiac fibroblasts are activated and secrete a large amount of ECM, leading to changes in cardiac fibrosis, myocardial stiffness, and cardiac function declines and accelerating the development of heart failure. There is a close relationship between heart yin deficiency and cardiac fibrosis, which have similar pathogenic mechanisms. Heart Yin deficiency, characterized by insufficient Yin fluids, causes the heart to lose its nourishing function, which acts as the initiating factor for myocardial dystrophy. The deficiency of body fluids leads to stagnation of blood flow, resulting in blood stasis and water retention. Blood stasis and water retention accumulate in the heart, which aligns with the pathological manifestation of excessive deposition of ECM, as a tangible pathogenic factor. This is an inevitable stage of the disease process. The lingering of blood stasis combined with water retention eventually leads to the generation of heat and toxins, triggering inflammatory responses similar to heat toxins, which continuously stimulate the heart and cause the ultimate outcome of CF. Considering the syndrome of heart Yin deficiency, traditional Chinese medicine capable of nourishing Yin, activating blood, and promoting urination can reduce myocardial cell apoptosis, inhibit fibroblast activation, and lower the inflammation level, showing significant advantages in combating CF.
Humans
;
Fibrosis/drug therapy*
;
Animals
;
Yin Deficiency/metabolism*
;
Myocardium/metabolism*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
5.Mechanism of matrine against senescence in human umbilical vein endothelial cells based on network pharmacology and experimental verification.
Dian LIU ; Zi-Ping XIANG ; Ze-Sen DUAN ; Xin-Ying LIU ; Xing WANG ; Hui-Xin ZHANG ; Chao WANG
China Journal of Chinese Materia Medica 2025;50(8):2260-2269
Utilizing network pharmacology, molecular docking, and cellular experimental validation, this study delved into the therapeutic efficacy and underlying mechanisms of matrine in combating senescence. Databases were utilized to predict targets related to the anti-senescence effects of matrine, resulting in the identification of 81 intersecting targets for matrine in the treatment of senescence. A protein-protein interaction(PPI) network was constructed, and key targets were screened based on degree values. Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed on the key targets to elucidate the critical pathways involved in the anti-senescence effects of matrine. Molecular docking was conducted between matrine and key targets. A senescence model was established using human umbilical vein endothelial cells(HUVECs) induced with hydrogen peroxide(H_2O_2). Following treatment with varying concentrations of matrine(0.5, 1, and 2 mmol·L~(-1)), cell viability was assessed by using the CCK-8. SA-β-galactosidase staining was employed to observe the positive rate of senescent cells. Flow cytometry was utilized to measure the apoptosis rate. Real-time quantitative PCR(RT-PCR) was utilized to measure the mRNA expression of apoptosis-related cysteine peptidase 3(CASP3), albumin(ALB), glycogen synthase kinase 3β(GSK3B), CD44 molecule(CD44), and tumor necrosis factor-α(TNF-α). Western blot was performed to detect the protein expression of tumor protein p53(p53), cyclin-dependent kinase inhibitor 1A(p21), cyclin-dependent kinase inhibitor 2A(p16), and retinoblastoma tumor suppressor protein(pRb) in the senescence signaling pathway, p38 protein kinase(p38), c-Jun N-terminal kinase(JNK), and extracellular regulated protein kinases(ERK) in the mitogen-activated protein kinase(MAPK) pathway, and phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in the PI3K/Akt signaling pathway. The experimental results revealed that matrine significantly increased the viability of HUVECs(P<0.05), decreased the positive rate of senescent cells and the apoptosis rate(P<0.05), and reduced the mRNA expression levels of CASP3, ALB, GSK3B, CD44, and TNF-α(P<0.05). It also inhibited the protein expression of p53, p21, p16 and pRb in the senescence signaling pathway(P<0.05), upregulated the protein expression of p-PI3K/PI3K and p-Akt/Akt(P<0.05), and downregulated the protein expression of p-p38/p38, p-JNK/JNK, and p-ERK/ERK(P<0.05). Collectively, these findings suggest that matrine exerts an inhibitory effect on HUVECs senescence, and its mechanism involves the modulation of the senescence signaling pathway, MAPK pathway, and PI3K/Akt signaling pathway to suppress cell apoptosis and inflammation.
Humans
;
Matrines
;
Quinolizines/chemistry*
;
Alkaloids/chemistry*
;
Human Umbilical Vein Endothelial Cells/cytology*
;
Cellular Senescence/drug effects*
;
Network Pharmacology
;
Molecular Docking Simulation
;
Signal Transduction/drug effects*
;
Protein Interaction Maps/drug effects*
;
Cell Survival/drug effects*
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
6.Analysis of impact of host plants on quality of Taxilli Herba based on widely targeted metabolomics.
Dong-Lan ZHOU ; Zi-Shu CHAI ; Mei RU ; Fei-Ying HUANG ; Xie-Jun ZHANG ; Min GUO ; Yong-Hua LI
China Journal of Chinese Materia Medica 2025;50(12):3281-3290
This study aims to explore the impact of host plants on the quality of Taxilli Herba and provide a theoretical basis for the quality control of Taxilli Herba. The components of Taxilli Herba from three different host plants(Morus alba, Salix babylonica, and Cinnamomum cassia) and its 3 hosts(mulberry branch, willow branch, and cinnamon branch) were detected by widely targeted metabolomics based on ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS). Principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and Venn diagram were employed for analysis. A total of 717 metabolites were detected in Taxilli Herba from the three host plants and the branches of these host plants by UPLC-MS/MS. The results of PCA and OPLS-DA of Taxilli Herba from the three different host plants showed an obvious separation trend due to the different effects of host plants. The Venn diagram showed that there were 32, 8, and 26 characteristic metabolites in samples of Taxilli Herba from M. alba host, S. babylonica host, and C. cassia host, respectively. It was found by comparing the characteristic metabolites of Taxilli Herba and its hosts that each host transmits its characteristic components to Taxilli Herba, so that the Taxilli Herba contains the characteristic components of the host. The Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis showed that the differential metabolites of Taxilli Herba from the three hosts were mainly enriched in flavonoid biosynthesis, arginine and proline metabolism, and glycolysis/gluconeogenesis pathways. Furthermore, the differential metabolites enriching pathways of Taxilli Herba from the three hosts were different depending on the host. In a word, host plants have a significant impact on the metabolites of Taxilli Herba, and it may be an important factor for the quality of Taxilli Herba.
Metabolomics/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Quality Control
;
Salix/chemistry*
;
Cinnamomum aromaticum/metabolism*
;
Principal Component Analysis
7.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
8.Research progress on treatment of non-small cell lung cancer with traditional Chinese medicine based on immunotherapy.
Ying-Ying ZHAO ; Zi-Yu LU ; Sheng-Long LI ; Mian-Hua WU
China Journal of Chinese Materia Medica 2025;50(16):4415-4424
Non-small cell lung cancer(NSCLC) is the most common type of lung cancer worldwide, accounting for approximately 80%-85% of all lung cancer cases. Despite the clinical benefits of traditional treatments such as surgery, chemotherapy, and radiotherapy, challenges such as the high rate of postoperative recurrence and resistance of some patients to chemotherapy and targeted therapies limit their effectiveness, necessitating the exploration of more effective treatment options. In recent years, immunotherapy, especially immune checkpoint inhibitors(ICIs), has revolutionized NSCLC treatment and significantly improved the survival prognosis of some patients. However, the efficacy of immunotherapy is limited by tumor immune escape, drug resistance, and immune-related adverse events(irAEs), which have not been effectively addressed. Traditional Chinese medicine(TCM), as a traditional therapeutic approach, has shown unique advantages in NSCLC treatment, with studies indicating its ability to enhance immune responses, regulate immune checkpoints, and improve the tumor microenvironment(TME), thus boosting the efficacy of immunotherapy. Additionally, the multi-target and multi-pathway effects of TCM help mitigate the side effects of immunotherapy, further improving efficacy and safety. This review summarizes the latest research progress of TCM in NSCLC immunotherapy, focusing on the research results of TCM in enhancing the effect of immunotherapy by regulating immune cells, optimizing the immune microenvironment, and being applied with ICIs, etc. The latest research progress of TCM in alleviating irAEs is also elucidated. The aim is to provide theoretical support for the clinical application of TCM in the prevention and treatment of NSCLC and the research and development of new drugs and promote the optimization and development of combined immunotherapy and TCM treatment models.
Humans
;
Carcinoma, Non-Small-Cell Lung/therapy*
;
Lung Neoplasms/therapy*
;
Immunotherapy/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Animals
;
Tumor Microenvironment/drug effects*
9.Mechanism of Chaijin Jieyu Anshen Formula in regulating synaptic damage in nucleus accumbens neurons of rats with insomnia complicated with depression through TREM2/C1q axis.
Ying-Juan TANG ; Jia-Cheng DAI ; Song YANG ; Xiao-Shi YU ; Yao ZHANG ; Hai-Long SU ; Zhi-Yuan LIU ; Zi-Xuan XIANG ; Jun-Cheng LIU ; Hai-Xia HE ; Jian LIU ; Yuan-Shan HAN ; Yu-Hong WANG ; Man-Shu ZOU
China Journal of Chinese Materia Medica 2025;50(16):4538-4545
This study aims to investigate the effect of Chaijin Jieyu Anshen Formula on the neuroinflammation of rats with insomnia complicated with depression through the regulation of triggering receptor expressed on myeloid cells 2(TREM2)/complement protein C1q signaling pathway. Rats were randomly divided into a normal group, a model group, a positive drug group, as well as a high, medium, and low-dose groups of Chaijin Jieyu Anshen Formula, with 10 rats in each group. Except for the normal group, the other groups were injected with p-chlorophenylalanine and exposed to chronic unpredictable mild stress to establish the rat model of insomnia complicated with depression. The sucrose preference experiment, open field experiment, and water maze test were performed to evaluate the depression in rats. Enzyme-linked immunosorbent assay was employed to detect serum 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) levels. Hematoxylin and eosin staining and Nissl staining were used to observe the damage in nucleus accumbens neurons. Western blot and immunofluorescence were performed to detect TREM2, C1q, postsynaptic density 95(PSD-95), and synaptophysin 1(SYN1) expressions in rat nucleus accumbens, respectively. Golgi-Cox staining was utilized to observe the synaptic spine density of nucleus accumbens neurons. The results show that, compared with the model group, Chaijin Jieyu Anshen Formula can significantly increase the sucrose preference as well as the distance and number of voluntary activities, shorten the immobility time in forced swimming test and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant test. The serum 5-HT, DA, and NE contents in the model group are significantly lower than those in the normal group, with the above contents significantly increased after the intervention of Chaijin Jieyu Anshen Formula. In addition, Chaijin Jieyu Anshen Formula can alleviate pathological damages such as swelling and loose arrangement of tissue cells in the nucleus accumbens, while increasing the Nissl body numbers. Chaijin Jieyu Anshen Formula can improve synaptic damage in the nucleus accumbens and increase the synaptic spine density. Compared to the normal group, the expression of C1q protein was significantly higher in the model group, while the expression of TREM2 protein was significantly lower. Compared to the model group, the intervention with Chaijin Jieyu Anshen Formula significantly downregulated the expression of C1q protein and significantly upregulated the expression of TREM2. Compared with the model group, the PSD-95 and SYN1 fluorescence intensity is significantly increased in the groups receiving different doses of Chaijin Jieyu Anshen Formula. In summary, Chaijin Jieyu Anshen Formula can reduce the C1q protein expression, relieve the TREM2 inhibition, and promote the synapse-related proteins PSD-95 and SNY1 expression. Chaijin Jieyu Anshen Formula improves synaptic injury of the nucleus accumbens neurons, thereby treating insomnia complicated with depression.
Animals
;
Male
;
Rats
;
Nucleus Accumbens/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/complications*
;
Membrane Glycoproteins/genetics*
;
Rats, Sprague-Dawley
;
Sleep Initiation and Maintenance Disorders/complications*
;
Neurons/metabolism*
;
Receptors, Immunologic/genetics*
;
Signal Transduction/drug effects*
;
Synapses/metabolism*
10.Differences in intestinal absorption characteristics of Rubus multibracteatus extract in normal and inflammatory pain model rats by in-vitro everted intestine sac method.
Ming-Li BAO ; Qing ZHANG ; Yang JIN ; Yi CHEN ; Jian-Qing PENG ; Si-Ying CHEN ; Zhi-Jie MA ; Jian LIAO ; Jing HUANG ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2025;50(16):4690-4704
This study compared the differences in intestinal absorption characteristics of eleven active components in Rubus multibracteatus(RM) extract(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, epicatechin, catechin, xanthotoxin, p-coumaric acid, caffeic acid, and apigenin-7-O-glucuronide) between normal rats and inflammatory pain model rats using the in-vitro everted intestinal sac model. The RM extract was administered at absorption concentrations of 25.0, 50.0, and 100.0 mg·mL~(-1). The contents of the eleven components in intestinal absorption solution samples were quantified by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), and their cumulative absorption(Q) and absorption rate constant(K_a) were calculated to evaluate the absorption characteristics of these components in normal rats and inflammatory pain model rats. The results show that except for catechin, epicatechin, and caffeic acid, the cumulative absorption-time curves of the other eight components(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, xanthotoxin, p-coumaric acid, and apigenin-7-O-glucuronide) exhibit an upward trend without saturation, with correlation coefficients(R~2) all > 0.9, indicating linear absorption. However, the overall absorption of all components is not dose-dependent with increasing concentration, suggesting that their absorption mechanisms are not solely passive diffusion. In both normal and model rats, the jejunum shows the highest absorption for all components except xanthotoxin. The overall absorption of seven components(excluding protocatechuic acid, caffeic acid, apigenin-7-O-glucuronide, and luteoloside) in normal rats is better than that in model rats across all intestinal segments. These findings indicate that the pathological state of inflammatory pain alters the intestinal absorption of RM extract, and its mechanism needs further investigation.
Animals
;
Rats
;
Intestinal Absorption/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/metabolism*
;
Disease Models, Animal
;
Pain/metabolism*
;
Intestines/drug effects*
;
Intestinal Mucosa/metabolism*

Result Analysis
Print
Save
E-mail