1.4 Weeks of HIIT Modulates Metabolic Homeostasis of Hippocampal Pyruvate-lactate Axis in CUMS Rats Improving Their Depression-like Behavior
Yu-Mei HAN ; Chun-Hui BAO ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Huan XIANG ; Jun-Sheng TIAN ; Shi ZHOU ; Shuang-Shuang WU
Progress in Biochemistry and Biophysics 2025;52(6):1468-1483
ObjectiveTo investigate the role of 4-week high-intensity interval training (HIIT) in modulating the metabolic homeostasis of the pyruvate-lactate axis in the hippocampus of rats with chronic unpredictable mild stress (CUMS) to improve their depressive-like behavior. MethodsForty-eight SPF-grade 8-week-old male SD rats were randomly divided into 4 groups: the normal quiet group (C), the CUMS quiet group (M), the normal exercise group (HC), and the CUMS exercise group (HM). The M and HM groups received 8 weeks of CUMS modeling, while the HC and HM groups were exposed to 4 weeks of HIIT starting from the 5th week (3 min (85%-90%) Smax+1 min (50%-55%) Smax, 3-5 cycles, Smax is the maximum movement speed). A lactate analyzer was used to detect the blood lactate concentration in the quiet state of rats in the HC and HM groups at week 4 and in the 0, 2, 4, 8, 12, and 24 h after exercise, as well as in the quiet state of rats in each group at week 8. Behavioral indexes such as sucrose preference rate, number of times of uprightness and number of traversing frames in the absenteeism experiment, and other behavioral indexes were used to assess the depressive-like behavior of the rats at week 4 and week 8. The rats were anesthetized on the next day after the behavioral test in week 8, and hippocampal tissues were taken for assay. LC-MS non-targeted metabolomics, target quantification, ELISA and Western blot were used to detect the changes in metabolite content, lactate and pyruvate concentration, the content of key metabolic enzymes in the pyruvate-lactate axis, and the protein expression levels of monocarboxylate transporters (MCTs). Results4-week HIIT intervention significantly increased the sucrose preference rate, the number of uprights and the number of traversed frames in the absent field experiment in CUMS rats; non-targeted metabolomics assay found that 21 metabolites were significantly changed in group M compared to group C, and 14 and 11 differential metabolites were significantly dialed back in the HC and HM groups, respectively, after the 4-week HIIT intervention; the quantitative results of the targeting showed that, compared to group C, lactate concentration in the hippocampal tissues of M group, compared with group C, lactate concentration in hippocampal tissue was significantly reduced and pyruvate concentration was significantly increased, and 4-week HIIT intervention significantly increased the concentration of lactate and pyruvate in hippocampal tissue of HM group; the trend of changes in blood lactate concentration was consistent with the change in lactate concentration in hippocampal tissue; compared with group C, the LDHB content of group M was significantly increased, the content of PKM2 and PDH, as well as the protein expression level of MCT2 and MCT4 were significantly reduced. The 4-week HIIT intervention upregulated the PKM2 and PDH content as well as the protein expression levels of MCT2 and MCT4 in the HM group. ConclusionThe 4-week HIIT intervention upregulated blood lactate concentration and PKM2 and PDH metabolizing enzymes in hippocampal tissues of CUMS rats, and upregulated the expression of MCT2 and MCT4 transport carrier proteins to promote central lactate uptake and utilization, which regulated metabolic homeostasis of the pyruvate-lactate axis and improved depressive-like behaviors.
2.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
3.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
4.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
5.Mechanism of Chaijin Jieyu Anshen Formula in regulating synaptic damage in nucleus accumbens neurons of rats with insomnia complicated with depression through TREM2/C1q axis.
Ying-Juan TANG ; Jia-Cheng DAI ; Song YANG ; Xiao-Shi YU ; Yao ZHANG ; Hai-Long SU ; Zhi-Yuan LIU ; Zi-Xuan XIANG ; Jun-Cheng LIU ; Hai-Xia HE ; Jian LIU ; Yuan-Shan HAN ; Yu-Hong WANG ; Man-Shu ZOU
China Journal of Chinese Materia Medica 2025;50(16):4538-4545
This study aims to investigate the effect of Chaijin Jieyu Anshen Formula on the neuroinflammation of rats with insomnia complicated with depression through the regulation of triggering receptor expressed on myeloid cells 2(TREM2)/complement protein C1q signaling pathway. Rats were randomly divided into a normal group, a model group, a positive drug group, as well as a high, medium, and low-dose groups of Chaijin Jieyu Anshen Formula, with 10 rats in each group. Except for the normal group, the other groups were injected with p-chlorophenylalanine and exposed to chronic unpredictable mild stress to establish the rat model of insomnia complicated with depression. The sucrose preference experiment, open field experiment, and water maze test were performed to evaluate the depression in rats. Enzyme-linked immunosorbent assay was employed to detect serum 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) levels. Hematoxylin and eosin staining and Nissl staining were used to observe the damage in nucleus accumbens neurons. Western blot and immunofluorescence were performed to detect TREM2, C1q, postsynaptic density 95(PSD-95), and synaptophysin 1(SYN1) expressions in rat nucleus accumbens, respectively. Golgi-Cox staining was utilized to observe the synaptic spine density of nucleus accumbens neurons. The results show that, compared with the model group, Chaijin Jieyu Anshen Formula can significantly increase the sucrose preference as well as the distance and number of voluntary activities, shorten the immobility time in forced swimming test and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant test. The serum 5-HT, DA, and NE contents in the model group are significantly lower than those in the normal group, with the above contents significantly increased after the intervention of Chaijin Jieyu Anshen Formula. In addition, Chaijin Jieyu Anshen Formula can alleviate pathological damages such as swelling and loose arrangement of tissue cells in the nucleus accumbens, while increasing the Nissl body numbers. Chaijin Jieyu Anshen Formula can improve synaptic damage in the nucleus accumbens and increase the synaptic spine density. Compared to the normal group, the expression of C1q protein was significantly higher in the model group, while the expression of TREM2 protein was significantly lower. Compared to the model group, the intervention with Chaijin Jieyu Anshen Formula significantly downregulated the expression of C1q protein and significantly upregulated the expression of TREM2. Compared with the model group, the PSD-95 and SYN1 fluorescence intensity is significantly increased in the groups receiving different doses of Chaijin Jieyu Anshen Formula. In summary, Chaijin Jieyu Anshen Formula can reduce the C1q protein expression, relieve the TREM2 inhibition, and promote the synapse-related proteins PSD-95 and SNY1 expression. Chaijin Jieyu Anshen Formula improves synaptic injury of the nucleus accumbens neurons, thereby treating insomnia complicated with depression.
Animals
;
Male
;
Rats
;
Nucleus Accumbens/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/complications*
;
Membrane Glycoproteins/genetics*
;
Rats, Sprague-Dawley
;
Sleep Initiation and Maintenance Disorders/complications*
;
Neurons/metabolism*
;
Receptors, Immunologic/genetics*
;
Signal Transduction/drug effects*
;
Synapses/metabolism*
6.Guiding significance of intra-articular sagittal reduction in the treatment of tibial plateau fractures.
Jia-Fan ZHANG ; An-Hua LONG ; Da-Cheng HAN ; Zi-Chao JIA ; Ya-Kui ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(1):100-104
Tibial plateau fracture is a fracture involving the proximal articular surface of the tibia, and its injury mechanism is complex, the fracture morphology is different, and it is often accompanied by different degrees of soft tissue injury, which is difficult to diagnose and treat. In recent years, the research hotspot has focused on solving the reduction and fixation of the posterior lateral column of the tibial plateau, because it has been clinically found that the residual sagittal plane after tibial plateau fracture is insufficient reduction or loss of reduction leads to knee joint dysfunction. The posterior inclination angle of the tibial plateau is an important parameter to describe the sagittal alignment of the tibia. In the natural state, the posterior tibial slope(PTS) is altered to involve the soft tissues around the knee joint such as anterior cruciate ligament(ACL) and posterior cruciate ligament(PCL), which affects the stability of the knee joint. In total knee arthroplasty(TKA), choosing the appropriate PTS can effectively increase the prosthesis survival rate, improve the flexion and extension knee efficacy, which is beneficial to knee joint stability. In the field of orthopedic trauma, correction of sagittal deformity is equally important, following the principle of "reverse mechanism of injury". Quantitative evaluation of postoperative sagittal realignment of tibial plateau fractures and investigation of the effect of sagittal realignment on long-term outcomes and complications are still poorly understood and require further clinical and biomechanical studies.
Humans
;
Tibial Fractures/physiopathology*
;
Fracture Fixation, Internal/methods*
;
Tibial Plateau Fractures
7.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
8.Assessment of respiratory protection competency of staff in healthcare facilities
Hui-Xue JIA ; Xi YAO ; Mei-Hua HU ; Bing-Li ZHANG ; Xin-Ying SUN ; Zi-Han LI ; Ming-Zhuo DENG ; Lian-He LU ; Jie LI ; Li-Hong SONG ; Jian-Yu LU ; Xue-Mei SONG ; Hang GAO ; Liu-Yi LI
Chinese Journal of Infection Control 2024;23(1):25-31
Objective To understand the respiratory protection competency of staff in hospitals.Methods Staff from six hospitals of different levels and characteristics in Beijing were selected,including doctors,nurses,medical technicians,and servicers,to conduct knowledge assessment on respiratory protection competency.According to exposure risks of respiratory infectious diseases,based on actual cases and daily work scenarios,content of respira-tory protection competency assessment was designed from three aspects:identification of respiratory infectious di-seases,transmission routes and corresponding protection requirements,as well as correct selection and use of masks.The assessment included 6,6,and 8 knowledge points respectively,with 20 knowledge points in total,all of which were choice questions.For multiple-choice questions,full marks,partial marks,and no mark were given respective-ly if all options were correct,partial options were correct and without incorrect options,and partial options were correct but with incorrect options.Difficulty and discrimination analyses on question of each knowledge point was conducted based on classical test theory.Results The respiratory protection competency knowledge assessment for 326 staff members at different risk levels in 6 hospitals showed that concerning the 20 knowledge points,more than 60%participants got full marks for 6 points,while the proportion of full marks for other questions was relatively low.Less than 10%participants got full marks for the following 5 knowledge points:types of airborne diseases,types of droplet-borne diseases,conventional measures for the prevention and control of healthcare-associated infec-tion with respiratory infectious diseases,indications for wearing respirators,and indications for wearing medical protective masks.Among the 20 knowledge questions,5,1,and 14 questions were relatively easy,medium,and difficult,respectively;6,1,4,and 9 questions were with discrimination levels of ≥0.4,0.30-0.39,0.20-0.29,and ≤0.19,respectively.Conclusion There is still much room for hospital staff to improve their respiratory protection competency,especially in the recognition of diseases with different transmission routes and the indications for wearing different types of masks.
9.Protective effects and mechanism of penehyclidine hydrochloride on myocardial ischemia-reperfusion injury in mice
Chunmei JIA ; Chenxue MENG ; Baohui ZHANG ; Shuai HAN ; Congna ZI
China Pharmacy 2024;35(24):3010-3015
OBJECTIVE To investigate the protective effects and potential mechanism of penehyclidine hydrochloride (PHC) on myocardial ischemia-reperfusion (I/R) injury in mice through the macrophage migration inhibitory factor (MIF)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathways. METHODS Male C57BL/6 mice were randomly divided into sham operation group, I/R group, I/R+PHC group (PHC 20 μg/kg), I/R+ISO-1 group (MIF inhibitor 35 mg/kg), I/R+ PHC+ISO-1 group (with the same dosage as each single drug group), with 8 mice in each group. Except for the sham operation group, the myocardial I/R injury model was prepared by coronary artery ligation. Thirty minutes before ligation, mice in each drug group were injected with 1 mL of the corresponding drug solution through the tail vein. After 120 min of reperfusion, the levels of cardiac function indexes [heart rate, stroke volume, ejection fraction, cardiac output, left ventricular posterior wall thickness in systole (LVPWs), left ventricular posterior wall thickness in diastole (LVPWd)], serum inflammatory factors [interleukin-6 (IL- 6), IL-10, tumor necrosis factor-α (TNF-α)] in mice were detected in each group; the pathological changes and ultrastructure of myocardial tissue were observed, and the protein expressions of B cell lymphoma-2 (Bcl-2), phosphorylated AMPKα (p-AMPKα) and MIF in myocardial tissue were detected. RESULTS Compared with the sham operation group, the myocardial cells in the I/R group were loosely arranged, with severe infiltration of inflammatory cells and obvious mitochondrial damage. Serum levels of IL-6 and TNF-α and protein expression of p-AMPKα in myocardial tissue were significantly increased or upregulated, while heart rate, stroke volume, ejection fraction, cardiac output, LVPWd and serum level of IL-10 were significantly decreased (P<0.05). Compared with the I/R group, the myocardial tissue lesions in the I/R+PHC group were alleviated; serum levels of IL-6 and TNF-α were decreased significantly, while heart rate, stroke volume, ejection fraction, cardiac output, LVPWs, LVPWd, serum level of IL-10, and protein expressions of Bcl-2, p- AMPKα and MIF in myocardial tissue were significantly increased or upregulated (P<0.05). However, myocardial tissue lesions of mice in the I/R+ISO-1 group worsened, with most quantitative indicators significantly deteriorating (P<0.05); MIF inhibitor could generally reverse the protective effect of PHC on I/R mice (P<0.05). CONCLUSIONS PHC can improve cardiac function, reduce myocardial inflammation, and restore the ultrastructure of myocardial tissue in I/R mice. These effects may be related to the activation of the MIF/AMPK signaling pathway.
10.Advances in crystal nucleation for amorphous drugs
Jie ZHANG ; Kang LI ; Zi-qing YANG ; Zi-han DING ; Sai-jun XIAO ; Zhi-ming YUE ; Li-mei CAI ; Jia-wen LI ; Ding KUANG ; Min-zhuo LIU ; Zhi-hong ZENG
Acta Pharmaceutica Sinica 2024;59(7):1962-1969
Amorphous solid dispersion (ASD) is one of the most effective formulation approaches to enhance the water solubility and oral bioavailability of poorly water-soluble drugs. However, maintenance of physical stability of amorphous drug is one of the main challenges in the development of ASD. Crystallization is a process of nucleation and crystal growth. The nucleation is the key factor that influences the physical stability of the ASD. However, a theoretical framework to describe the way to inhibit the nucleation of amorphous drug is not yet available. We reviewed the methods and theories of nucleation for amorphous drug. Meanwhile, we also summarized the research progress on the mechanism of additives influence on nucleation and environmental factors on nucleation. This review aims to enhance the better understanding mechanism of nucleation of amorphous drug and controlling over the crystal nucleation during the ASD formulation development.

Result Analysis
Print
Save
E-mail