1.Research progress in mechanisms of traditional Chinese medicine polysaccharides in prevention and treatment of alcoholic liver disease.
Yu-Fan CHEN ; He JIANG ; Qing MA ; Qi-Han LUO ; Shuo HUANG ; Jiang QIU ; Fu-Zhe CHEN ; Zi-Yi SHAN ; Ping QIU
China Journal of Chinese Materia Medica 2025;50(2):356-362
Alcoholic liver disease(ALD), a major cause of chronic liver disease worldwide, poses a serious threat to human health. Despite the availability of various drugs for treating ALD, their efficacy is often uncertain, necessitating the search for new therapeutic approaches. Traditional Chinese medicine polysaccharides have garnered increasing attention in recent years due to their versatility, high efficiency, and low side effects, and they have demonstrated significant potential in preventing and treating ALD. Emerging studies have suggested that these polysaccharides exert their therapeutic effects through multiple mechanisms, including the inhibition of oxidative stress and the regulation of lipid metabolism, gut microbiota, and programmed cell death. This review summarizes the recent research progress in the pharmacological effects and regulatory mechanisms of traditional Chinese medicine polysaccharides in treating ALD, aiming to provide a scientific basis and theoretical support for their application in the prevention and treatment of ALD.
Humans
;
Liver Diseases, Alcoholic/metabolism*
;
Polysaccharides/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Oxidative Stress/drug effects*
;
Medicine, Chinese Traditional
;
Gastrointestinal Microbiome/drug effects*
;
Lipid Metabolism/drug effects*
2.Alleviation of hypoxia/reoxygenation injury in HL-1 cells by ginsenoside Rg_1 via regulating mitochondrial fusion based on Notch1 signaling pathway.
Hui-Yu ZHANG ; Xiao-Shan CUI ; Yuan-Yuan CHEN ; Gao-Jie XIN ; Ce CAO ; Zi-Xin LIU ; Shu-Juan XU ; Jia-Ming GAO ; Hao GUO ; Jian-Hua FU
China Journal of Chinese Materia Medica 2025;50(10):2711-2718
This paper explored the specific mechanism of ginsenoside Rg_1 in regulating mitochondrial fusion through the neurogenic gene Notch homologous protein 1(Notch1) pathway to alleviate hypoxia/reoxygenation(H/R) injury in HL-1 cells. The relative viability of HL-1 cells after six hours of hypoxia and two hours of reoxygenation was detected by cell counting kit-8(CCK-8). The lactate dehydrogenase(LDH) activity in the cell supernatant was detected by the lactate substrate method. The content of adenosine triphosphate(ATP) was detected by the luciferin method. Fluorescence probes were used to detect intracellular reactive oxygen species(Cyto-ROS) levels and mitochondrial membrane potential(ΔΨ_m). Mito-Tracker and Actin were co-imaged to detect the number of mitochondria in cells. Fluorescence quantitative polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels of Notch1, mitochondrial fusion protein 2(Mfn2), and mitochondrial fusion protein 1(Mfn1). The results showed that compared with that of the control group, the cell activity of the model group decreased, and the LDH released into the cell culture supernatant increased. The level of Cyto-ROS increased, and the content of ATP decreased. Compared with that of the model group, the cell activity of the ginsenoside Rg_1 group increased, and the LDH released into the cell culture supernatant decreased. The level of Cyto-ROS decreased, and the ATP content increased. Ginsenoside Rg_1 elevated ΔΨ_m and increased mitochondrial quantity in HL-1 cells with H/R injury and had good protection for mitochondria. After H/R injury, the mRNA and protein expression levels of Notch1 and Mfn1 decreased, while the mRNA and protein expression levels of Mfn2 increased. Ginsenoside Rg_1 increased the mRNA and protein levels of Notch1 and Mfn1, and decreased the mRNA and protein levels of Mfn2. Silencing Notch1 inhibited the action of ginsenoside Rg_1, decreased the mRNA and protein levels of Notch1 and Mfn1, and increased the mRNA and protein levels of Mfn2. In summary, ginsenoside Rg_1 regulated mitochondrial fusion through the Notch1 pathway to alleviate H/R injury in HL-1 cells.
Ginsenosides/pharmacology*
;
Receptor, Notch1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Animals
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Oxygen/metabolism*
;
Cell Hypoxia/drug effects*
;
Cell Survival/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Humans
3.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
4.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*
5.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
6.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
7.G-Quadruplex Dimer/ExonucleaseⅠAssisted Signal Amplification Strategy for Rapid Determination of Aflatoxin B1 Using a Paper Chip
Xuan HE ; Ji QI ; Zi-Hui YU ; Yan CHEN ; Xiu-Li FU
Chinese Journal of Analytical Chemistry 2024;52(8):1094-1102,中插1-中插5
In this work,a tetrahedral DNA nanostructure(TDN)functionalized rotational paper-based analytical device(RPAD)was constructed for rapid and highly sensitive detection of aflatoxin B1(AFB1)using exonucleaseⅠ(ExoⅠ)and G-quadruplex(G4)dimer.Herein,a single-stranded DNA,containing both of the G4 dimer sequence and AFB1 recognition sequence,was used as the recognition probe(G4 dimer probe).TDN was used to precisely regulate the orientation and distribution density of G4 dimer probe to improve the recognition efficiency of the system.ExoⅠas a single stranded DNA specific nuclease was introduced for effective amplification of the detection signal.G4 dimer was employed to enhance the fluorescence signal of thioflavin T(ThT).In the absence of AFB1,the G4 dimer structure of G4 dimer probe could specifically bind with ThT to generate dramatic fluorescence enhancement.However,in the presence of AFB1,AFB1 could specifically bind with G4 dimer probe,resulting in the dissociation of G4 dimer probe from TDN and further be digested by ExoⅠ.At the same time,the released AFB1 could bind to G4 dimer probe on the TDN again by this way to generate signal amplification.After this cycle,the amount of aptamer on the TDN was decreased,accompanied by the reduction of G4 dimer on TDN.In this case,the fluorescence intensity of the system was reduced.The designed RPAD showed a good linear response in AFB1 concentration range of 0.0001-500 ng/mL and the limit of detection was 0.1 pg/mL.Moreover,the proposed strategy was successfully applied to detection of AFB1 in peanut and wine.The developed TDN/G4 dimer/ExoⅠstrategy improved the specificity and sensitivity of the system significantly.
8.Analysis of male reproduction based on the"inner kidney and outer kidney"theory advanced by nation-famous Chinese medicine Professor XU Fu-song
Yun CHEN ; Zi-Yang HAN ; Zhi-Xing SUN ; Fu-Hua HUANG
National Journal of Andrology 2024;30(2):163-166
Based on the traditional Chinese medicine theories and modern medical theories,Professor XU Fu-song,a famous veteran Chinese medicine physician in China,established the theory of"inner kidney and outer kidney",emphasizing concomitant treatment of inner kidney and outer kidney,which plays an important guiding role in deepening the understanding of the pathogenesis and clinical diagnosis and treatment of male infertility.This article summarizes the relevant academic thoughts and experiences of Pro-fessor XU,with an analysis of his advanced ideas in the field of male reproduction.
9.Application of failure mode and effects analysis based on action priority in the prevention and control of surgical site infection after colorectal surgery
Hong-Man WU ; Jing-Min LAI ; Le-Tao CHEN ; Chen-Chao FU ; Zi-Yuan TANG ; Feng ZHOU ; Cui ZENG ; Lan-Man ZENG ; Nan REN ; Xun HUANG
Chinese Journal of Infection Control 2024;23(7):881-888
Objective To evaluate the process risk of the implementation of prevention and control measures for surgical site infection(SSI)after colorectal surgery,and explore the application effect of failure mode and effects analysis(FMEA)based on action priority.Methods FMEA based on action priority was adopted to evaluate the whole process of the implementation of prevention and control measures for SSI after colorectal surgery.Prioritiza-tion ranking was conducted according to whether optimized measures were taken.Standard-reaching rate of comp-liance to SSI prevention and control measures as well as SSI incidence before and after the implementation of FMEA were compared.Results After evaluation,there were 7 high-priority and 22 medium-priority prevention and control measures for SSI.The control of medium-priority measures was strengthened,with a focus on developing further preventive and detectable measures for high-priority measures.The re-evaluation results after improvement showed that 7 high-priority measures have been downgraded to medium priority,and 16 medium-priority measures have been downgraded to low priority.Standard-reaching rate of compliance to SSI prevention and control measures in-creased from 77.15%(2 566/3 326)to 92.47%(3 096/3 348),and SSI incidence decreased from 6.04%(58/960)to 2.54%(60/2 364).Conclusion Application of FMEA based on action priority can effectively evaluate the risk of prevention and control process of SSI after colorectal surgery,and adopting preventive risk control measures accord-ing to the current situation can reduce the incidence of SSI after colorectal surgery.
10.Observation on Clinical Efficacy of Therapy of Clearing Heat,Percolating Dampness and Lowering Turbidity Combined with Silibin Meglumine Tablets in the Treatment of Non-alcoholic Steatohepatitis of Damp-Heat Accumulation Type
Hua-Lu FU ; Huo-Cheng YE ; Zi-Chen OUYANG ; Yan-Ping LU ; Shu LI ; Jing-Bao HU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(7):1744-1750
Objective To investigate the clinical efficacy of therapy of clearing heat,percolating dampness and lowering turbidity combined with Silibin Meglumine Tablets in the treatment of non-alcoholic steatohepatitis(NASH)patients with abnormal alanine aminotransferase(ALT)level of damp-heat accumulation type.Methods A retrospective study was conducted.According to the medication,80 patients with NASH with abnormal ALT level of damp-heat accumulation type were divided into control group and observation group,with 40 cases in each group.The control group was treated with Silibin Meglumine Tablets,and the observation group was treated with therapy of clearing heat,percolating dampness and lowering turbidity on the basis of treatment for the control group.The course of treatment covered 12 weeks.The changes of liver function indicators of ALT,aspartate aminotransferase(AST),and gamma glutamyl transpeptidase(GGT),blood lipid indicators of total cholesterol(CHOL)and triglyceride(TRIG),and the degree of hepatic steatosis in the two groups were observed before and after treatment.After treatment,the clinical efficacy and safety of the two groups were evaluated.Results(1)After 12 weeks of treatment,the total effective rate of the observation group was 95.00%(38/40),and that of the control group was 77.50%(31/40).The curative effect of the observation group was significantly superior to that of the control group,and the difference was statistically significant(P<0.05).(2)After treatment,the levels of ALT,AST and GGT in the two groups were significantly lower than those before treatment(P<0.05),and the decrease of ALT,AST and GGT in the observation group was significantly superior to that in the control group(P<0.05).(3)After treatment,the levels of CHOL and TRIG in the two groups were significantly lower than those before treatment(P<0.05),and the decrease of CHOL and TRIG in the observation group was significantly superior to that in the control group(P<0.05).(4)After treatment,the degree of hepatic steatosis in the two groups was significantly lower than that before treatment(P<0.05),and the decrease of the degree of hepatic steatosis in the observation group was significantly superior to that in the control group(P<0.05).(5)During the treatment,no obvious adverse reactions occurred in the two groups,indicating high safety.Conclusion The therapy of clearing heat,percolating dampness and lowering turbidity combined with Silibin Meglumine Tablets exerts certain effect in the treatment of NASH patients with abnormal ALT level of damp-heat accumulation type,and the therapy can significantly enhance the clinical efficacy of Silibin Meglumine Tablets alone for NASH.

Result Analysis
Print
Save
E-mail