1.Metabolomic Analysis of Mesenteric Lymph Fluid in Rats After Alcohol Gavage
Yuan ZHANG ; Zi-Ye MENG ; Wen-Bo LI ; Yu-Meng JING ; Gui-Chen LIU ; Zi-Yao HAO ; Xiu XU ; Zhen-Ao ZHAO
Progress in Biochemistry and Biophysics 2024;51(9):2194-2209
ObjectiveThe absorption of substances into blood is mainly dependent on the mesenteric lymphatic pathway and the portal venous pathway. The substances transported via the portal venous pathway can be metabolized by the biotransformation in the liver. On the contrary, the substances in the mesenteric lymph fluid enter the blood circulation without biotransformation and can affect the body directly. Alcohol consumption is strongly linked to global health risk. Previous reports have analyzed the changes of metabolites in plasma, serum, urine, liver and feces after alcohol consumption. Whether alcohol consumption affects the metabolites in lymph fluid is still unknown. Therefore, it is particularly important to explore the changes of substances transported via the mesenteric lymphatic pathway and analyze their harmfulness after alcohol drinking. MethodsIn this study, male Wistar rats were divided into high, medium, and low-dosage alcohol groups (receiving Chinese Baijiu at 56%, 28% and 5.6% ABV, respectively) and water groups. The experiment was conducted by alcohol gavage lasting 10 d, 10 ml·kg-1·d-1. Then mesenteric lymph fluid was collected for non-targeted metabolomic analysis by using liquid chromatography-mass spectrometry (LC-MS) and bioinformatic analysis. Principal component analysis and hierarchical clustering were performed by using Biodeep. Meanwhile, KEGG enrichment analysis of the differential metabolites was also performed by Biodeep. MetaboAnalyst was used to analyze the relationship between the differential metabolites and diseases. ResultsThe metabolites in the mesenteric lymph fluid of the high-dosage alcohol group change the most. Based on the KEGG enrichment analysis, the pathways of differential metabolites between the high-dosage alcohol group and the control group are mainly enriched in the central carbon metabolism in cancer, bile secretion, linoleic acid metabolism, biosynthesis of unsaturated fatty acids, etc. Interestingly, in the biosynthesis of unsaturated fatty acids category, the content of arachidonic acid is increased by 7.25 times, whereas the contents of palmitic acid, oleic acid, stearic acid, arachidic acid and erucic acid all decrease, indicating lipid substances in lymph fluid are absorbed selectively after alcohol intake. It’s worth noting that arachidonic acid is closely related to inflammatory response. Furthermore, the differential metabolites are mainly related with schizophrenia, Alzheimer’s disease and lung cancer. The differential metabolites between the medium-dosage alcohol and the control group were mainly enriched in phenylalanine metabolism, valine, leucine and isoleucine biosynthesis, linoleic acid metabolism and cholesterol metabolism. The differential metabolites are mainly related to schizophrenia, Alzheimer’s disease, lung cancer and Parkinson’s disease. As the dose of alcohol increases, the contents of some metabolites in lymph fluid increase, including cholesterol, L-leucine, fumaric acid and mannitol, and the number of metabolites related to schizophrenia also tends to increase, indicatingthat some metabolites absorbed by the intestine-lymphatic pathway are dose-dependent on alcohol intake. ConclusionAfter alcohol intake, the metabolites transported via the intestinal-lymphatic pathway are significantly changed, especially in the high-dosage group. Some metabolites absorbed via the intestinal-lymphatic pathway are dose-dependent on alcohol intake. Most importantly, alcohol intake may cause inflammatory response and the occurrence of neurological diseases, psychiatric diseases and cancer diseases. High-dosage drinking may aggravate or accelerate the occurrence of related diseases. These results provide new insights into the pathogenesis of alcohol-related diseases based on the intestinal-lymphatic pathway.
2.Research status of key technologies and equipment for dynamic perception of battlefield casualties
Zi-Jian WANG ; Chen SU ; Xin-Xi XU ; Xin LIU ; Zhen-Bao WANG ; Pei-Peng LIU ; Jie-Feng GUO ; Xiu-Guo ZHAO
Chinese Medical Equipment Journal 2024;45(9):95-108
The research progress in key technologies for dynamic perception of battlefield casualties was reviewed,including unmanned equipment dynamic mapping,dynamic environment semantic segmentation and casualty detection and identification.The discussion also covered the current state of research on casualty dynamic perception equipment in aerial and ground domains.The development trends of key technologies and equipment for dynamic perception of battlefield casualties were pointed out,and references were provided for enhancing the efficacy of battlefield casualty care and improving medical service support capabilities.[Chinese Medical Equipment Journal,2024,45(9):95-108]
3.ABO*A2.08 Subtype Allele Identification and Protein Structure Analysis in Newborns
Xin LIU ; Lian-Hui WANG ; Jin SHU ; Zi-Heng XU ; Xiu-Yun XU
Journal of Experimental Hematology 2024;32(1):225-230
Objective:To study the serological characteristics of ABO*A2.08 subtype and explore its genetic molecular mechanism.Methods:ABO blood group identification was performed on proband and her family members by routine serological methods.ABO genotyping and sequence analysis were performed by polymerase chain reaction-sequence specific primer(PCR-SSP),and direct sequencing of PCR products from exons 6 and 7 of ABO gene were directly sequenced and analyzed.The effect of gene mutation in A2.08 subtype on structural stability of GTA protein was investigated by homologous protein conserved analysis,3D molecular modeling and protein stability prediction.Results:The proband's serological test results showed subtype Ax,and ABO genotyping confirmed that the proband's genotype was ABO*A207/08.Gene sequencing of the proband's father confirmed the characteristic variation of c.539G>C in the 7th exon of ABO gene,leading to the replacement of polypeptide chain p.Arg180Pro(R180P).3D protein molecular modeling and analysis suggested that the number of hydrogen bonds of local amino acids in the protein structure was changed after the mutation,and protein stability prediction showed that the mutation had a great influence on the protein structure stability.Conclusion:The mutation of the 7th exon c.539G>C of ABO gene leads to the substitution of polypeptide chain amino acid,which affects the structural stability of GTA protein and leads to the change of enzyme activity,resulting in the A2.08 phenotype.The mutated gene can be stably inherited.
4.Effect of anti-vascular endothelial growth factor therapy on intraocular inflammatory cytokine levels in the treatment of proliferative diabetic retinopathy
Jin-Xiu LUO ; Zi-Zhong HU ; Qing-Huai LIU ; Yuan FANG
International Eye Science 2023;23(5):827-832
AIM: To explore the effects of anti-vascular endothelial growth factor(VEGF)agents(Conbercept)before pars plana vitrectomy(PPV)on inflammatory cytokine levels of patients with proliferative diabetic retinopathy(PDR).METHODS: A total of 49 patients(49 eyes)who diagnosed with PDR at the First Affiliated Hospital with Nanjing Medical University from June 2017 to January 2018 were recruited and randomly divided into two groups. A total of 25 cases(25 eyes)who did not receive intravitreal injection before PPV were included in no-intravitreal injection of Conbercept(IVC)group, and 24 cases(24 eyes)who received IVC 5~7d before PPV were included in IVC group. The vitreous samples were collected from all the patients at the start of PPV. Levels of VEGF-A, monocyte chemotactic protein-1(MCP-1)and inflammatory cytokines in the vitreous humor were measured using Luminex technology.RESULTS: Compared with the no-IVC group, the level of VEGF-A decreased significantly(P<0.001), the concentration of IL-6(P=0.004), IL-8(P=0.002), IL-18(P=0.04)and TNF-α(P=0.03)increased remarkably in the IVC group. The other inflammatory cytokines in the vitreous humor showed no significant difference between the IVC and no-IVC groups.CONCLUSION: IVC before PPV can effectively decrease the concentration of VEGF-A, but had limited influence on the level of inflammatory cytokines in the vitreous humor of patients with PDR.
5.Zuogui Jiangtang Qinggan Formula improves glucolipid metabolism in type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease by regulating FoxO1/MTP/APOB signaling pathway.
Yi-Xin XIANG ; Ya-Lan HUANG ; Min ZHOU ; Jun-Ju ZOU ; Xiu LIU ; Zi-Yu LIU ; Fan XIAO ; Rong YU ; Qin XIANG
China Journal of Chinese Materia Medica 2023;48(16):4438-4445
This study aimed to investigate the effect and mechanism of Zuogui Jiangtang Qinggan Formula(ZGJTQG) on the glucolipid metabolism of type 2 diabetes mellitus(T2DM) complicated with non-alcoholic fatty liver disease(NAFLD). NAFLD was induced by a high-fat diet(HFD) in MKR mice(T2DM mice), and a model of T2DM combined with NAFLD was established. Forty mice were randomly divided into a model group, a metformin group(0.067 g·kg~(-1)), and high-and low-dose ZGJTQG groups(29.64 and 14.82 g·kg~(-1)), with 10 mice in each group. Ten FVB mice of the same age were assigned to the normal group. Serum and liver tissue specimens were collected from mice except for those in the normal and model groups after four weeks of drug administration by gavage, and fasting blood glucose(FBG) and fasting insulin(FINS) levels were measured. The levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein(LDL) were detected by the single reagent GPO-PAP method. Very low-density lipoprotein(VLDL) was detected by enzyme-linked immunosorbent assay(ELISA). Alanine aminotransferase(ALT) and aspartate ami-notransferase(AST) were determined by the Reitman-Frankel assay. The pathological changes in the liver were observed by hematoxylin-eosin(HE) staining and oil red O staining. Real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR) and Western blot were adopted to detect the mRNA and protein expression of forkhead transcription factor O1(FoxO1), microsomal triglyceride transfer protein(MTP), and apolipoprotein B(APOB) in the liver. The results showed that high-dose ZGJTQG could signi-ficantly reduce the FBG and FINS levels(P<0.05, P<0.01), improve glucose tolerance and insulin resistance(P<0.05, P<0.01), alleviate the liver damage caused by HFD which was reflected in improving liver steatosis, and reduce the serum levels of TC, TG, LDL, VLDL, ALT, and AST(P<0.05, P<0.01) in T2DM mice combined with NAFLD. The findings also revealed that the mRNA and protein expression of FoxO1, MTP, and APOB in the liver was significantly down-regulated after the intervention of high-dose ZGJTQG(P<0.05, P<0.01). The above study showed that ZGJTQG could effectively improve glucolipid metabolism in T2DM combined with NAFLD, and the mechanism was closely related to the regulation of the FoxO1/MTP/APOB signaling pathway.
Mice
;
Animals
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Liver
;
Lipoproteins, LDL/metabolism*
;
Signal Transduction
;
Diet, High-Fat/adverse effects*
;
RNA, Messenger/metabolism*
6. Effects of Zishen Huoxue Prescription on OGD/R-induced mitophagy in hippocampal neurons
Tong-He LIU ; Jia-Yi SHI ; Bo-Jing ZHANG ; Qian-Rou MA ; Run-Cheng ZHANG ; Xiu-Li ZHANG ; Da-Hua WU ; Zi-Ting ZHAO
Chinese Pharmacological Bulletin 2023;39(6):1189-1194
Aim To explore the protective effect of Zishen Huoxue Prescription on OGD/R-induced primary hippocampal neuron damage in rats and the possible mechanism. Methods After the isolated primary hippocampal neurons were identified by immunofluorescence, OGD/R induced neuronal damage, and the changes of autophagic flux at different re-oxygenation time were observed by confocal laser scanning microscopy. After OGD/R-induced primary hippocampal neurons were intervened with serum containing Zishen Huoxue Prescription, cell viability was detected by CCK-8, cell apoptosis was detected by flow cytometry, autophagosomes were detected by transmission electron microscopy, and autophagy-related protein expressions were detected by Western blot. Results 10% Zishen Huoxue Prescription-containing serum could significantly improve cell viability and reduce the proportion of cell apoptosis, increase the number of autophagosomes in neurons, and up-regulate the expression of autophagy-related protein PINK1, Parkin, and pATG16L1. Conclusions Zishen Huoxue Prescription can effectively resist OGD/R-induced apoptosis of primary hippocampal neurons in rats, and its effect may be related to the regulation of PINK1-Parkin pathway to promote mitophagy.
7.Status and Influencing Factors of Hypertension in the Elderly Aged 60 and Above in Mianyang.
Jia-Lin LIU ; Hong-Ju GUO ; Qin WANG ; Zi-Xuan CHEN ; Yu-Ke YU ; Xiu-Xiu LIU ; Ping YUAN
Acta Academiae Medicinae Sinicae 2022;44(5):802-808
Objective To understand the prevalence and influencing factors of hypertension among the elderly aged 60 years and above in Mianyang City,Sichuan Province,so as to provide clues for targeted prevention and control of hypertension. Methods A total of 115 775 permanent residents aged 60 and above screened out from Mianyang demonstration sites from October 2017 to April 2019 were investigated by questionnaire and physical examination,and the data of personal basic information,lifestyle,body height,body weight,waist circumference,and blood pressure were collected.SPSS 22.0 was used for descriptive analysis,single factor analysis,and Logistic regression analysis. Results The prevalence rate of hypertension in the elderly aged 60 years and above in Mianyang was 50.60%.Specifically,the prevalence rates of hypertension in men and women were 50.27% and 50.85%,respectively.The prevalence rate of hypertension increased with the increase in age([Formula: see text]=370.199,P<0001).Multivariate Logistic regression analysis showed that the independent risk factors of hypertension included age of 70-79 years(OR=1.327,95%CI=1.292-1.363,P<0.001),the age of 80 years and above(OR=1.455,95%CI=1.386-1.527,P<0.001),widowhood(OR=1.343,95%CI=1.296-1.392,P<0.001),divorce(OR=1.255,95%CI=1.033-1.525,P=0.022),overweight(OR=1.431,95%CI=1.391-1.473,P<0.001),obesity(OR=2.171,95%CI=2.076-2.270,P<0.001),waist-to-height ratio>0.5(OR=1.317,95%CI=1.281-1.354,P<0.001),history of diabetes(OR=1.865,95%CI=1.791-1.941,P<0.001),history of smoking(OR=1.107,95%CI=1.068-1.148,P<0.001),and history of drinking(OR=1.950,95%CI=1.894-2.009,P<0.001).Living in urban-rural fringe areas(OR=0.628,95%CI=0.594-0.664,P<0.001),education background of junior high school and above(OR=0.942,95%CI=0.912-0.974,P<0.001),and low body weight(OR=0.785,95%CI=0.742-0.830,P<0.001) were protective factors for hypertension. Conclusions More than 50% of the elderly aged 60 years and above in Mianyang suffer from hypertension.The elderly with advanced age,widowhood,divorce,overweight,obesity,waist-to-height ratio>0.5,diabetes history,smoking history,and drinking history are the high-risk groups of hypertension.
Aged
;
Male
;
Humans
;
Female
;
Overweight
;
Hypertension/etiology*
;
Waist Circumference
;
Obesity
;
Risk Factors
;
Prevalence
;
Body Weight
;
China/epidemiology*
;
Body Mass Index
8.Effect of light intensity on growth, accumulation of ginsenosides, and expression of related enzyme genes of Panax quinquefolius.
Zi-Qi LIU ; Yi WANG ; Xiu WANG ; Na PENG ; Shan-Shan YANG ; Hui-Hui SHAO ; Xiao-Lin JIAO ; Wei-Wei GAO
China Journal of Chinese Materia Medica 2022;47(18):4877-4885
Appropriate light intensity is favorable for the photosynthesis, biomass accumulation, key enzyme activity, and secondary metabolite synthesis of medicinal plants. This study aims to explore the influence of light intensity on growth and quality of Panax quinquefolius. To be specific, sand culture experiment was carried out in a greenhouse under the light intensity of 40, 80, 120, and 160 μmol·m~(-2)·s~(-1), respectively. The growth indexes, photosynthetic characteristics, content of 6 ginsenosides of the 3-year-old P. quinquefolius were determined, and the expression of ginsenoside synthesis-related enzyme genes in leaves, main roots, and fibrous roots was determined. The results showed that the P. quinquefolius growing at 80 μmol·m~(-2)·s~(-1) light intensity had the most biomass and the highest net photosynthetic rate. The total biomass of P. quinquefolius treated with 120 μmol·m~(-2)·s~(-1) light intensity was slightly lower than that with 80 μmol·m~(-2)·s~(-1). The root-to-shoot ratio in the treatment with 120 μmol·m~(-2)·s~(-1) light intensity was up to 6.86, higher than those in other treatments(P<0.05),and the ginsenoside content in both aboveground and underground parts of P. quinquefolius in this treatment was the highest, which was possibly associated with the high expression of farnesylpyrophosphate synthase(FPS), squalene synthase(SQS), squalene epoxidase(SQE), oxidosqualene cyclase(OSC), dammarenediol-Ⅱ synthase(DS), and P450 genes in leaves and SQE and DS genes in main roots. In addition, light intensities of 120 and 160 μmol·m~(-2)·s~(-1) could promote PPD-type ginsenoside synthesis in leaves by triggering up-regulation of the expression of upstream ginsenoside synthesis genes. The decrease in underground biomass accumulation of the P. quinquefolius grown under weak light(40 μmol·m~(-2)·s~(-1)) and strong light(160 μmol·m~(-2)·s~(-1)) was possibly attributed to the low net photosynthetic rate, stomatal conductance, and transpiration rate in leaves. In the meantime, the low expression of SQS, SQE, OSC, and DS genes in the main roots might led to the decrease in ginsenoside content. However, there was no significant correlation between the ginsenoside content and the expression of synthesis-related genes in the fibrous roots of P. quinquefolius. Therefore, the light intensity of 80 and 120 μmol·m~(-2)·s~(-1) is beneficial to improving yield and quality of P. quinquefolius. The above findings contributed to a theoretical basis for reasonable shading in P. quinquefolius cultivation, which is of great significance for improving the yield and quality of P. quinquefolius through light regulation.
Farnesyl-Diphosphate Farnesyltransferase/metabolism*
;
Ginsenosides
;
Panax/metabolism*
;
Plant Roots/metabolism*
;
Sand
;
Squalene Monooxygenase
9.Identification and Molecular Biology of Variant D Blood Group of RHD*95A Genotype.
Xin LIU ; Lian-Hui WANG ; Zi-Heng XU ; Jin SHU ; Meng-Yuan DONG ; Xiao-Yan TONG ; Xiu-Yun XU
Journal of Experimental Hematology 2022;30(6):1839-1844
OBJECTIVE:
To explore the molecular biology of D variant blood group with RHD*95A genotype and the genetic mechanism of its generation.
METHODS:
A total of 6 samples from 3 generations of a family were analyzed. RHD blood group was identified by saline test tube and microcolumn gel card method. 10 exons of RHD gene were amplified by Polymerase Chain Reaction-Sequence Specific Primer (PCR-SSP) and analyzed by direct sequencing. Homology modeling was used to compare the structural differences between mutant RHD protein and wild-type RHD protein.
RESULTS:
The proband was identified as D variant by serological identification, RHD gene sequencing directly detected a c. 95 c > A mutation in exon 1 that leads to encoding the 32-bit amino acids by threonine Thr (T) into aspartic acid Asn (N), the rest of the exon sequences were normal compared with the normal RHD*01 gene. In the family, the proband's father, grandmather and uncle were all carried the same RHD*95A allele. Protein modeling results suggested that the hydrogen chain connected to the 32nd amino acid residue was changed after p.T32N mutation, which affected the structural stability of RHD protein.
CONCLUSION
The first genetic lineage of the RHD*95A gene was identified in a Chinese population. The c.95C>A mutation in RHD gene was found in the family, which resulted in reduced expression of RHD antigen and showed D variant, the mutation could be stably inheritable. Gene identification and protein structure analysis of D variant population is helpful to explore the molecular mechanism of its formation and ensure the safety of blood transfusion.
Humans
;
Blood Group Antigens
10.Efficacy of recombinant human growth hormone treatment in children born small for gestational age with syndromic and non-syndromic short stature.
Ming CHENG ; Bing Yan CAO ; Min LIU ; Chang SU ; Jia Jia CHEN ; Xiao Qiao LI ; Bei Bei ZHANG ; Yu Ting SHI ; Zi Jun HE ; Chun Xiu GONG
Chinese Journal of Pediatrics 2022;60(11):1196-1201
Objective: To analyse the efficacy of recombinant human growth hormone (rhGH) treatment in children born small for gestational age (SGA) with syndormic and non-syndormic short stature. Methods: The clinical data of 59 children born SGA who were diagnosed as short stature and admitted to the Center of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital from July 2012 to June 2021 were collected and analyzed. According to the 2019 consensus on short stature, they were divided into syndromic group and non-syndromic group. Before treatment and 6, 12, 18 and 24 months after treatment, height standard deviation score (Ht-SDS), difference of height standard deviation (∆Ht-SDS) and homeostasis model assessment-insulin resistance index (HOMA-IR) were compared between groups, while Ht-SDS and HOMA-IR were compared before and after treatment. Independent t test or Kruskal-Wallis test were used for comparison between the 2 groups, and paired t test or Mann-Whitney U test were used for the intra-group comparison. Results: Among the 59 cases, 37 were males and 22 females, aged (5.5±2.3) years. There was no significant difference in Ht-SDS after 12 months of treatment between 2 groups (0.9±0.4 vs. 1.2±0.4, t=1.68, P=0.104) or in height SDS after 24 months of treatment (1.4±0.7 vs. 1.9±0.5, t=1.52, P=0.151). After 12 months of treatment, the insulin resistance index of the non-syndromic group was significantly higher than that of the syndromic group (2.29 (1.43, 2.99) vs. 0.90 (0.55, 1.40), Z=-2.95, P=0.003). There were significant differences in Ht-SDS between 6 months and before treatment, 12 months and 6 months in syndromic type (Z=7.65, 2.83 P<0.001, P=0.020), but all were significant differences in non-syndromic type between 6 months and before treatment, 12 months and 6 months, 18 months and 12 months, 24 months and 18 months (Z=11.95, 7.54, 4.26, 3.83, all P<0.001). Conclusion: The efficacy of rhGH treatment in children born SGA is comparable between syndromic and non-syndromic short stature cases, but non-syndromic children treated with rhGH need more frequent follow-up due to the risk of insulin resistance.
Child
;
Female
;
Humans
;
Male
;
Body Height
;
Gestational Age
;
Human Growth Hormone/therapeutic use*
;
Infant, Small for Gestational Age
;
Insulin
;
Insulin Resistance
;
Recombinant Proteins
;
Child, Preschool

Result Analysis
Print
Save
E-mail