1.The neurophysiological mechanisms of exercise-induced improvements in cognitive function.
Jian-Xiu LIU ; Bai-Le WU ; Di-Zhi WANG ; Xing-Tian LI ; Yan-Wei YOU ; Lei-Zi MIN ; Xin-Dong MA
Acta Physiologica Sinica 2025;77(3):504-522
The neurophysiological mechanisms by which exercise improves cognitive function have not been fully elucidated. A comprehensive and systematic review of current domestic and international neurophysiological evidence on exercise improving cognitive function was conducted from multiple perspectives. At the molecular level, exercise promotes nerve cell regeneration and synaptogenesis and maintains cellular development and homeostasis through the modulation of a variety of neurotrophic factors, receptor activity, neuropeptides, and monoamine neurotransmitters, and by decreasing the levels of inflammatory factors and other modulators of neuroplasticity. At the cellular level, exercise enhances neural activation and control and improves brain structure through nerve regeneration, synaptogenesis, improved glial cell function and angiogenesis. At the structural level of the brain, exercise promotes cognitive function by affecting white and gray matter volumes, neural activation and brain region connectivity, as well as increasing cerebral blood flow. This review elucidates how exercise improves the internal environment at the molecular level, promotes cell regeneration and functional differentiation, and enhances the brain structure and neural efficiency. It provides a comprehensive, multi-dimensional explanation of the neurophysiological mechanisms through which exercise promotes cognitive function.
Animals
;
Humans
;
Brain/physiology*
;
Cognition/physiology*
;
Exercise/physiology*
;
Nerve Regeneration/physiology*
;
Neuronal Plasticity/physiology*
2.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
3.Medication rules of Astragali Radix in ancient Chinese medical books based on "disease-medicine-dose" pattern.
Jia-Lei CAO ; Lü-Yuan LIANG ; Yi-Hang LIU ; Zi-Ming XU ; Xuan WANG ; Wen-Xi WEI ; He-Jia WAN ; Xing-Hang LYU ; Wei-Xiao LI ; Yu-Xin ZHANG ; Bing-Qi WEI ; Xian-Qing REN
China Journal of Chinese Materia Medica 2025;50(3):798-811
This study employed the "disease-medicine-dose" pattern to mine the medication rules of traditional Chinese medicine(TCM) prescriptions containing Astragali Radix in ancient Chinese medical books, aiming to provide a scientific basis for the clinical application of Astragali Radix and the development of new medicines. The TCM prescriptions containing Astragali Radix were retrieved from databases such as Chinese Medical Dictionary and imported into Excel 2020 to construct the prescription library. Statical analysis were performed for the prescriptions regarding the indications, syndromes, medicine use frequency, herb effects, nature and taste, meridian tropism, dosage forms, and dose. SPSS statistics 26.0 and IBM SPSS Modeler 18.0 were used for association rules analysis and cluster analysis. A total of 2 297 prescriptions containing Astragali Radix were collected, involving 233 indications, among which sore and ulcer, consumptive disease, sweating disorder, and apoplexy had high frequency(>25), and their syndromes were mainly Qi and blood deficiency, Qi and blood deficiency, Yin and Yang deficiency, and Qi deficiency and collateral obstruction, respectively. In the prescriptions, 98 medicines were used with the frequency >25 and they mainly included Qi-tonifying medicines and blood-tonifying medicines. Glycyrrhizae Radix et Rhizoma, Angelicae Sinensis Radix, Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, and Citri Reticulatae Pericarpium were frequently used. The medicines with high frequency mainly have warm or cold nature, and sweet, pungent, or bitter taste, with tropism to spleen, lung, heart, liver, and kidney meridians. In the treatment of sore and ulcer, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to promote granulation and heal up sores. In the treatment of consumptive disease, Astragali Radix was mainly used with the dose of 37.30 g and combined with Ginseng Radix et Rhizoma to tonify deficiency and replenish Qi. In the treatment of sweating disorder, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to consolidate exterior and stop sweating. In the treatment of apoplexy, Astragali Radix was mainly used with the dose of 7.46 g and combined with Glycyrrhizae Radix et Rhizoma to dispell wind and stop convulsions. Astragali Radix can be used in the treatment of multiple system diseases, with the effects of tonifying Qi and ascending Yang, consolidating exterior and stopping sweating, and expressing toxin and promoting granulation. According to the manifestations of different diseases, when combined with other medicines, Astragali Radix was endowed with the effects of promoting granulation and healing up sores, tonifying deficiency and Qi, consolidating exterior and stopping sweating, and dispelling wind and replenishing Qi. The findings provide a theoretical reference and a scientific basis for the clinical application of Astragali Radix and the development of new medicines.
Drugs, Chinese Herbal/history*
;
Humans
;
Medicine, Chinese Traditional/history*
;
History, Ancient
;
Astragalus Plant/chemistry*
;
China
;
Astragalus propinquus
4.Heart Yin deficiency and cardiac fibrosis: from pathological mechanisms to therapeutic strategies.
Jia-Hui CHEN ; Si-Jing LI ; Xiao-Jiao ZHANG ; Zi-Ru LI ; Xing-Ling HE ; Xing-Ling CHEN ; Tao-Chun YE ; Zhi-Ying LIU ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(7):1987-1993
Cardiac fibrosis(CF) is a cardiac pathological process characterized by excessive deposition of extracellular matrix(ECM). When the heart is damaged by adverse stimuli, cardiac fibroblasts are activated and secrete a large amount of ECM, leading to changes in cardiac fibrosis, myocardial stiffness, and cardiac function declines and accelerating the development of heart failure. There is a close relationship between heart yin deficiency and cardiac fibrosis, which have similar pathogenic mechanisms. Heart Yin deficiency, characterized by insufficient Yin fluids, causes the heart to lose its nourishing function, which acts as the initiating factor for myocardial dystrophy. The deficiency of body fluids leads to stagnation of blood flow, resulting in blood stasis and water retention. Blood stasis and water retention accumulate in the heart, which aligns with the pathological manifestation of excessive deposition of ECM, as a tangible pathogenic factor. This is an inevitable stage of the disease process. The lingering of blood stasis combined with water retention eventually leads to the generation of heat and toxins, triggering inflammatory responses similar to heat toxins, which continuously stimulate the heart and cause the ultimate outcome of CF. Considering the syndrome of heart Yin deficiency, traditional Chinese medicine capable of nourishing Yin, activating blood, and promoting urination can reduce myocardial cell apoptosis, inhibit fibroblast activation, and lower the inflammation level, showing significant advantages in combating CF.
Humans
;
Fibrosis/drug therapy*
;
Animals
;
Yin Deficiency/metabolism*
;
Myocardium/metabolism*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
5.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
6.Mechanism of matrine against senescence in human umbilical vein endothelial cells based on network pharmacology and experimental verification.
Dian LIU ; Zi-Ping XIANG ; Ze-Sen DUAN ; Xin-Ying LIU ; Xing WANG ; Hui-Xin ZHANG ; Chao WANG
China Journal of Chinese Materia Medica 2025;50(8):2260-2269
Utilizing network pharmacology, molecular docking, and cellular experimental validation, this study delved into the therapeutic efficacy and underlying mechanisms of matrine in combating senescence. Databases were utilized to predict targets related to the anti-senescence effects of matrine, resulting in the identification of 81 intersecting targets for matrine in the treatment of senescence. A protein-protein interaction(PPI) network was constructed, and key targets were screened based on degree values. Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed on the key targets to elucidate the critical pathways involved in the anti-senescence effects of matrine. Molecular docking was conducted between matrine and key targets. A senescence model was established using human umbilical vein endothelial cells(HUVECs) induced with hydrogen peroxide(H_2O_2). Following treatment with varying concentrations of matrine(0.5, 1, and 2 mmol·L~(-1)), cell viability was assessed by using the CCK-8. SA-β-galactosidase staining was employed to observe the positive rate of senescent cells. Flow cytometry was utilized to measure the apoptosis rate. Real-time quantitative PCR(RT-PCR) was utilized to measure the mRNA expression of apoptosis-related cysteine peptidase 3(CASP3), albumin(ALB), glycogen synthase kinase 3β(GSK3B), CD44 molecule(CD44), and tumor necrosis factor-α(TNF-α). Western blot was performed to detect the protein expression of tumor protein p53(p53), cyclin-dependent kinase inhibitor 1A(p21), cyclin-dependent kinase inhibitor 2A(p16), and retinoblastoma tumor suppressor protein(pRb) in the senescence signaling pathway, p38 protein kinase(p38), c-Jun N-terminal kinase(JNK), and extracellular regulated protein kinases(ERK) in the mitogen-activated protein kinase(MAPK) pathway, and phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in the PI3K/Akt signaling pathway. The experimental results revealed that matrine significantly increased the viability of HUVECs(P<0.05), decreased the positive rate of senescent cells and the apoptosis rate(P<0.05), and reduced the mRNA expression levels of CASP3, ALB, GSK3B, CD44, and TNF-α(P<0.05). It also inhibited the protein expression of p53, p21, p16 and pRb in the senescence signaling pathway(P<0.05), upregulated the protein expression of p-PI3K/PI3K and p-Akt/Akt(P<0.05), and downregulated the protein expression of p-p38/p38, p-JNK/JNK, and p-ERK/ERK(P<0.05). Collectively, these findings suggest that matrine exerts an inhibitory effect on HUVECs senescence, and its mechanism involves the modulation of the senescence signaling pathway, MAPK pathway, and PI3K/Akt signaling pathway to suppress cell apoptosis and inflammation.
Humans
;
Matrines
;
Quinolizines/chemistry*
;
Alkaloids/chemistry*
;
Human Umbilical Vein Endothelial Cells/cytology*
;
Cellular Senescence/drug effects*
;
Network Pharmacology
;
Molecular Docking Simulation
;
Signal Transduction/drug effects*
;
Protein Interaction Maps/drug effects*
;
Cell Survival/drug effects*
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
7.Effect of Kuanxiong Aerosol on Perioperative Coronary Microcirculation in Patients with Unstable Angina Undergoing Elective PCI: A Pilot Randomized Controlled Trial.
Zi-Hao LIU ; Wen-Long XING ; Hong-Xu LIU ; Ju-Ju SHANG ; Ai-Yong LI ; Qi ZHOU ; Zhen-Min ZHANG ; Zhi-Bao LI ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(3):206-214
OBJECTIVE:
To evaluate the immediate effect of Kuanxiong Aerosol (KXA) on perioperative coronary microcirculation in patients with unstable angina (UA) suffering from elective percutaneous coronary intervention (PCI).
METHODS:
From February 2021 to July 2023, UA inpatients who underwent PCI alone in the left anterior descending (LAD) branch were included. Random numbers were generated to divide patients into the trial group and the control group at a ratio of 1:1. The index of coronary microcirculation resistance (IMR) was measured before PCI, and the trial group was given two sprays of KXA, while the control group was not given. IMR was measured again after PCI, cardiac troponin I (cTnI) and creatine kinase isoenzyme-MB (CK-MB) were detected before and 24 h after surgery, and major cardiovascular adverse events (MACEs) were recorded for 30 days. The data statistics and analysis personnel were blinded.
RESULTS:
Totally 859 patients were screened, and 62 of them were involved into this study. Finally, 1 patient in the trial group failed to complete the post-PCI IMR and was excluded, 30 patients were included for data analysis, while 31 patients in the control group were enrolled in data analysis. There was no significant difference in baseline data (age, gender, risk factors, previous history, biochemical index, and drug therapy, etc.) between the two groups. In addition, differences in IMR, cTnI and CK-MB were not statistically significant between the two groups before surgery. After PCI, the IMR level of the trial group was significantly lower than that of the control group (19.56 ± 14.37 vs. 27.15 ± 15.03, P=0.048). Besides, the incidence of perioperative myocardial injury (PMI) was lower in the trial group, but the difference was not statistically significant (6.67% vs. 16.13%, P=0.425). No MACEs were reported in either group.
CONCLUSIONS
KXA has the potential of improving coronary microvascular dysfunction. This study provides reference for the application of KXA in UA patients undergoing elective PCI. (Registration No. ChiCTR2300069831).
Humans
;
Percutaneous Coronary Intervention
;
Male
;
Microcirculation/drug effects*
;
Female
;
Angina, Unstable/physiopathology*
;
Pilot Projects
;
Middle Aged
;
Aged
;
Drugs, Chinese Herbal/pharmacology*
;
Aerosols
;
Troponin I/blood*
;
Coronary Circulation/drug effects*
;
Elective Surgical Procedures
8.Shuangshi Tonglin Capsule Improves Prostate Fibrosis through Nrf2/TGF-β1 Signaling Pathways.
Zi-Qiang WANG ; Peng MAO ; Bao-An WANG ; Qi GUO ; Hang LIU ; Yong YUAN ; Chuan WANG ; Ji-Ping LIU ; Xing-Mei ZHU ; Hao WEI
Chinese journal of integrative medicine 2025;31(6):518-528
OBJECTIVE:
To investigate the effect and mechanism of Shuangshi Tonglin Capsules (SSTL) in the treatment of prostate fibrosis (PF).
METHODS:
Human prostate stromal cells (WPMY-1) were used for in vitro experiments to establish PF cell models induced with estradiol (E2). The cell proliferation, migration and clonogenic capacity were determined by cell counting kit-8, scratch assay, and crystal violet staining, respectively. Sprague-Dawley rats were used for in vivo experiments. The changes in histomorphology and organ index of rat prostate by SSTL were determined. Pathologic changes and collagen deposition changes in rat prostate were observed by haematoxylin and eosin (HE) and Masson staining. Enzyme-linked immunosorbent assay kits were used to determine changes in rat PF markers fibroblast growth factor-23 (FGF-23), E2 and prostate specific antigen (PSA). Mechanistically, changes in oxidative stress indicators by SSTL were determined in WPMY-1 cells and PF rats. Then the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and transforming growth factor-β1 (TGF-β1)/Smad pathway-related proteins as well as Nrf2 and TGF-β1 mRNA were further detected by Western blot or quantitative real-time polymerase chain reaction both in vivo and in vitro.
RESULTS:
In the efficacy study, SSTL significantly reduced the proliferation, migration, and clonogenic ability of cells, improved the morphology of the glandular tissue, significantly reduced the prostate index, reduced glandular fibrous tissue and collagen deposition, and resulted in a significant decrease in the levels of FGF-23, E2 and PSA (P<0.01 or P<0.05). In the mechanistic study, SSTL ameliorated oxidative stress by significantly increasing superoxide dismutase and glutathione peroxidase levels and decreasing malondialdehyde level in WPMY-1 cells and rats (P<0.01 or P<0.05). SSTL significantly elevated the expressions of Nrf2, HO-1, NAD(P)H quinone oxidoreductase 1 (NQO-1), and Smad7 proteins in both cells and rats, and significantly decreased the expressions of TGF-β1, collagen I, α-smooth muscle actin and Smad4 proteins (P<0.01 or P<0.05). SSTL also elevated the content of Nrf2 mRNA and decreased the content of TGF-β1 mRNA in cells and rats (P<0.01 or P<0.05). The Nrf2 inhibitor ML385 was added in in vitro experiments to further validate the pathway relevance.
CONCLUSION
SSTL was effective in improving PF in vivo and in vitro, and its mechanism of action may function through the Nrf2/TGF-β1 signaling pathway.
Male
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Signal Transduction/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Fibrosis
;
Prostate/drug effects*
;
Cell Proliferation/drug effects*
;
Capsules
;
Cell Movement/drug effects*
;
Oxidative Stress/drug effects*
;
Rats
10.Association of Longitudinal Change in Fasting Blood Glucose with Risk of Cerebral Infarction in a Patients with Diabetes.
Tai Yang LUO ; Xuan DENG ; Xue Yu CHEN ; Yu He LIU ; Shuo Hua CHEN ; Hao Ran SUN ; Zi Wei YIN ; Shou Ling WU ; Yong ZHOU ; Xing Dong ZHENG
Biomedical and Environmental Sciences 2025;38(8):926-934
OBJECTIVE:
To investigate the association between long-term glycemic control and cerebral infarction risk in patients with diabetes through a large-scale cohort study.
METHODS:
This prospective, community-based cohort study included 12,054 patients with diabetes. From 2006 to 2012, 38,272 fasting blood glucose (FBG) measurements were obtained from these participants. FBG trajectory patterns were generated using latent mixture modelling. Cox proportional hazards models were applied to assess the subsequent risk of cerebral infarction associated with different FBG trajectory patterns.
RESULTS:
At baseline, the mean age of the participants was 55.2 years. Four distinct FBG trajectories were identified based on FBG concentrations and their changes over the 6-year follow-up period. After a median follow-up of 6.9 years, 786 cerebral infarction events were recorded. Different trajectory patterns were associated with significantly varied outcome risks (Log-Rank P < 0.001). Compared with the low-stability group, Hazard Ratio ( HR) adjusted for potential confounders were 1.37 for the moderate-increasing group, 1.23 for the elevated-decreasing group, and 2.08 for the elevated-stable group.
CONCLUSION
Sustained high FBG levels were found to play a critical role in the development of ischemic stroke among patients with diabetes. Controlling FBG levels may reduce the risk of cerebral infarction.
Humans
;
Cerebral Infarction/blood*
;
Middle Aged
;
Male
;
Female
;
Blood Glucose/analysis*
;
Fasting/blood*
;
Aged
;
Prospective Studies
;
Risk Factors
;
Diabetes Mellitus/blood*
;
Adult
;
Proportional Hazards Models

Result Analysis
Print
Save
E-mail