1.The Critical Roles of GABAergic Interneurons in The Pathological Progression of Alzheimer’s Disease
Ke-Han CHEN ; Zheng-Jiang YANG ; Zi-Xin GAO ; Yuan YAO ; De-Zhong YAO ; Yin YANG ; Ke CHEN
Progress in Biochemistry and Biophysics 2025;52(9):2233-2240
Alzheimer’s disease (AD), a progressive neurodegenerative disorder and the leading cause of dementia in the elderly, is characterized by severe cognitive decline, loss of daily living abilities, and neuropsychiatric symptoms. This condition imposes a substantial burden on patients, families, and society. Despite extensive research efforts, the complex pathogenesis of AD, particularly the early mechanisms underlying cognitive dysfunction, remains incompletely understood, posing significant challenges for timely diagnosis and effective therapeutic intervention. Among the various cellular components implicated in AD, GABAergic interneurons have emerged as critical players in the pathological cascade, playing a pivotal role in maintaining neural network integrity and function in key brain regions affected by the disease. GABAergic interneurons represent a heterogeneous population of inhibitory neurons essential for sustaining neural network homeostasis. They achieve this by precisely modulating rhythmic oscillatory activity (e.g., theta and gamma oscillations), which are crucial for cognitive processes such as learning and memory. These interneurons synthesize and release the inhibitory neurotransmitter GABA, exerting potent control over excitatory pyramidal neurons through intricate local circuits. Their primary mechanism involves synaptic inhibition, thereby modulating the excitability and synchrony of neural populations. Emerging evidence highlights the significant involvement of GABAergic interneuron dysfunction in AD pathogenesis. Contrary to earlier assumptions of their resistance to the disease, specific subtypes exhibit vulnerability or altered function early in the disease process. Critically, this impairment is not merely a consequence but appears to be a key driver of network hyperexcitability, a hallmark feature of AD models and potentially a core mechanism underlying cognitive deficits. For instance, parvalbumin-positive (PV+) interneurons display biphasic alterations in activity. Both suppressing early hyperactivity or enhancing late activity can rescue cognitive deficits, underscoring their causal role. Somatostatin-positive (SST+) neurons are highly sensitive to amyloid β-protein (Aβ) dysfunction. Their functional impairment drives AD progression via a dual pathway: compensatory hyperexcitability promotes Aβ generation, while released SST-14 forms toxic oligomers with Aβ, collectively accelerating neuronal loss and amyloid deposition, forming a vicious cycle. Vasoactive intestinal peptide-positive (VIP+) neurons, although potentially spared in number early in the disease, exhibit altered firing properties (e.g., broader spikes, lower frequency), contributing to network dysfunction (e.g., in CA1). Furthermore, VIP release induced by 40 Hz sensory stimulation (GENUS) enhances glymphatic clearance of Aβ, demonstrating a direct link between VIP neuron function and modulation of amyloid pathology. Given their central role in network stability and their demonstrable dysfunction in AD, GABAergic interneurons represent promising therapeutic targets. Current research primarily explores three approaches: increasing interneuron numbers (e.g., improving cortical PV+ interneuron counts and behavior in APP/PS1 mice with the antidepressant citalopram; transplanting stem cells differentiated into functional GABAergic neurons to enhance cognition), enhancing neuronal activity (e.g., using low-dose levetiracetam or targeted activation of specific molecules to boost PV+ interneuron excitability, restoring neural network γ‑oscillations and memory; non-invasive neuromodulation techniques like 40 Hz repetitive transcranial magnetic stimulation (rTMS), GENUS, and minimally invasive electroacupuncture to improve inhibitory regulation, promote memory, and reduce Aβ), and direct GABA system intervention (clinical and animal studies reveal reduced GABA levels in AD-affected brain regions; early GABA supplementation improves cognition in APP/PS1 mice, suggesting a therapeutic time window). Collectively, these findings establish GABAergic interneuron intervention as a foundational rationale and distinct pathway for AD therapy. In conclusion, GABAergic interneurons, particularly the PV+, SST+, and VIP+ subtypes, play critical and subtype-specific roles in the initiation and progression of AD pathology. Their dysfunction significantly contributes to network hyperexcitability, oscillatory deficits, and cognitive decline. Understanding the heterogeneity in their vulnerability and response mechanisms provides crucial insights into AD pathogenesis. Targeting these interneurons through pharmacological, neuromodulatory, or cellular approaches offers promising avenues for developing novel, potentially disease-modifying therapies.
2.Efficacy of balloon stent or oral estrogen for adhesion prevention in septate uterus: A randomized clinical trial.
Shan DENG ; Zichen ZHAO ; Limin FENG ; Xiaowu HUANG ; Sumin WANG ; Xiang XUE ; Lei YAN ; Baorong MA ; Lijuan HAO ; Xueying LI ; Lihua YANG ; Mingyu SI ; Heping ZHANG ; Zi-Jiang CHEN ; Lan ZHU
Chinese Medical Journal 2025;138(8):985-987
3.Molecular mechanism of transcription factor PU.1 regulating erythroid differentiation and its role in hematological diseases.
Zi-Jiang YANG ; Dan HU ; Xiu-Juan ZHANG
Acta Physiologica Sinica 2025;77(5):855-866
Transcription factor PU.1, as a core member of the ETS family, plays a pivotal role in the multi-lineage differentiation of hematopoietic stem cells, particularly in the regulation of erythroid differentiation. PU.1 orchestrates the process of hematopoietic stem cell differentiation towards erythroid cells by modulating the transcription of lineage-determining factors and interacting with other key transcription factors in a fine-tuned manner. PU.1 plays an irreplaceable role in the development and function of red blood cells, with its abnormal expression closely related to the occurrence and progression of various blood diseases, including leukemia, myelodysplastic syndromes, and various types of anemia. This article comprehensively analyzes the functional roles and molecular mechanisms of PU.1 in various stages of erythroid differentiation, as well as its potential roles in related blood diseases. This review not only deepens our understanding of the mechanism by which PU.1 regulates erythroid differentiation, but also provides theoretical grounds for blood disease therapies based on PU.1.
Humans
;
Proto-Oncogene Proteins/genetics*
;
Trans-Activators/genetics*
;
Cell Differentiation/physiology*
;
Hematologic Diseases/physiopathology*
;
Erythroid Cells/cytology*
;
Animals
;
Erythropoiesis/physiology*
4.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
5.Polysaccharide extract PCP1 from Polygonatum cyrtonema ameliorates cerebral ischemia-reperfusion injury in rats by inhibiting TLR4/NLRP3 pathway.
Xin ZHAN ; Zi-Xu LI ; Zhu YANG ; Jie YU ; Wen CAO ; Zhen-Dong WU ; Jiang-Ping WU ; Qiu-Yue LYU ; Hui CHE ; Guo-Dong WANG ; Jun HAN
China Journal of Chinese Materia Medica 2025;50(9):2450-2460
This study aims to investigate the protective effects and mechanisms of polysaccharide extract PCP1 from Polygonatum cyrtonema in ameliorating cerebral ischemia-reperfusion(I/R) injury in rats through modulation of the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. In vivo, SD rats were randomly divided into the sham group, model group, PCP1 group, nimodipine(NMDP) group, and TLR4 signaling inhibitor(TAK-242) group. A middle cerebral artery occlusion/reperfusion(MCAO/R) model was established, and neurological deficit scores and infarct size were evaluated 24 hours after reperfusion. Hematoxylin-eosin(HE) and Nissl staining were used to observe pathological changes in ischemic brain tissue. Transmission electron microscopy(TEM) assessed ultrastructural damage in cortical neurons. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and nitric oxide(NO) in serum. Immunofluorescence was used to analyze the expression of TLR4 and NLRP3 proteins. In vitro, a BV2 microglial cell oxygen-glucose deprivation/reperfusion(OGD/R) model was established, and cells were divided into the control, OGD/R, PCP1, TAK-242, and PCP1 + TLR4 activator lipopolysaccharide(LPS) groups. The CCK-8 assay evaluated BV2 cell viability, and ELISA determined NO release. Western blot was used to analyze the expression of TLR4, NLRP3, and downstream pathway-related proteins. The results indicated that, compared with the model group, PCP1 significantly reduced neurological deficit scores, infarct size, ischemic tissue pathology, cortical cell damage, and the levels of inflammatory factors IL-1β, IL-6, IL-18, TNF-α, and NO(P<0.01). It also elevated IL-10 levels(P<0.01) and decreased the expression of TLR4 and NLRP3 proteins(P<0.05, P<0.01). Moreover, in vitro results showed that, compared with the OGD/R group, PCP1 significantly improved BV2 cell viability(P<0.05, P<0.01), reduced cell NO levels induced by OGD/R(P<0.01), and inhibited the expression of TLR4-related inflammatory pathway proteins, including TLR4, myeloid differentiation factor 88(MyD88), tumor necrosis factor receptor-associated factor 6(TRAF6), phosphorylated nuclear factor-kappaB dimer RelA(p-p65)/nuclear factor-kappaB dimer RelA(p65), NLRP3, cleaved-caspase-1, apoptosis-associated speck-like protein(ASC), GSDMD-N, IL-1β, and IL-18(P<0.05, P<0.01). The protective effects of PCP1 were reversed by LPS stimulation. In conclusion, PCP1 ameliorates cerebral I/R injury by modulating the TLR4/NLRP3 signaling pathway, exerting anti-inflammatory and anti-pyroptotic effects.
Animals
;
Toll-Like Receptor 4/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Reperfusion Injury/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Polysaccharides/isolation & purification*
;
Polygonatum/chemistry*
;
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Humans
6.Intervention mechanism of Yiqi Fumai Formula in mice with experimental heart failure based on "heart-gut axis".
Zi-Xuan ZHANG ; Yu-Zhuo WU ; Ke-Dian CHEN ; Jian-Qin WANG ; Yang SUN ; Yin JIANG ; Yi-Xuan LIN ; He-Rong CUI ; Hong-Cai SHANG
China Journal of Chinese Materia Medica 2025;50(12):3399-3412
This paper aimed to investigate the therapeutic effect and mechanism of action of the Yiqi Fumai Formula(YQFM), a kind of traditional Chinese medicine(TCM), on mice with experimental heart failure based on the "heart-gut axis" theory. Based on the network pharmacology integrated with the group collaboration algorithm, the active ingredients were screened, a "component-target-disease" network was constructed, and the potential pathways regulated by the formula were predicted and analyzed. Next, the model of experimental heart failure was established by intraperitoneal injection of adriamycin at a single high dose(15 mg·kg~(-1)) in BALB/c mice. After intraperitoneal injection of YQFM(lyophilized) at 7.90, 15.80, and 31.55 mg·d~(-1) for 7 d, the protective effects of the formula on cardiac function were evaluated using indicators such as ultrasonic electrocardiography and myocardial injury markers. Combined with inflammatory factors in the cardiac and colorectal tissue, as well as targeted assays, the relevant indicators of potential pathways were verified. Meanwhile, 16S rDNA sequencing was performed on mouse fecal samples using the Illumina platform to detect changes in gut flora and analyze differential metabolic pathways. The results show that the administration of injectable YQFM(lyophilized) for 7 d significantly increased the left ventricular end-systolic internal diameter, fractional shortening, and ejection fraction of cardiac tissue of mice with experimental heart failure(P<0.05). Moreover, markers of myocardial injury were significantly decreased(P<0.05), indicating improved cardiac function, along with significantly suppressed inflammatory responses in cardiac and intestinal tissue(P<0.05). Additionally, the species of causative organisms was decreased, and the homeostasis of gut flora was improved, involving a modulatory effect on PI3K-Akt signaling pathway-related inflammation in cardiac and colorectal tissue. In conclusion, YQFM can affect the "heart-gut axis" immunity through the homeostasis of the gut flora, thereby exerting a therapeutic effect on heart failure. This finding provides a reference for the combination of TCM and western medicine to prevent and treat heart failure based on the "heart-gut axis" theory.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Heart Failure/microbiology*
;
Mice
;
Mice, Inbred BALB C
;
Male
;
Disease Models, Animal
;
Gastrointestinal Microbiome/drug effects*
;
Heart/physiopathology*
;
Humans
;
Signal Transduction/drug effects*
7.Advances in mechanotransduction signaling pathways in distraction osteogenesis.
Jinghong YANG ; Lujun JIANG ; Zi WANG ; Zhong LI ; Yanshi LIU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):912-918
OBJECTIVE:
To review the role and research progress of mechanotransduction signaling pathway in distraction osteogenesis, so as to provide theoretical basis and reference for clinical treatment.
METHODS:
The role and research progress of mechanotransduction signaling pathway in distraction osteogenesis were summarized by extensive review of relevant literature at home and abroad.
RESULTS:
The mechanotransduction signaling pathway plays a central role of "sensation-transformation-execution" in distraction osteogenesis, and activates a series of molecular mechanisms to promote the regeneration and remodeling of bone tissue by integrating external mechanical signals. Mechanical stimuli are converted into mechanotransduction signals through the perception of integrins, Piezo1 ion channels and bone cell networks. Activate downstream molecules are transduce through signal pathways such as Wnt/β-catenin, transforming growth factor β/bone morphogenetic protein-Smad, mitogen-activated protein kinase, protein kinase Hippo-Yes-associated protein/transcriptional coactivator with PDZ-binding motif, and phosphatidylinositol 3-kinase/ protein kinase B, so as to achieve the effects of promoting osteoblasts proliferation, accelerating endochondral ossification, regulating bone resorption and the like, thereby promoting the regeneration of new bone in the distraction area. The study of mechanotransduction signaling pathways in distraction osteogenesis is expected to optimize the mechanical parameters of distraction osteogenesis and provide targeted intervention strategies for accelerating new bone regeneration and mineralization in the distraction zone. However, the specific mechanism of mechanotransduction signaling pathway in distraction osteogenesis remains to be further elucidated, and artificial intelligence and multi-omics analysis may be the future development direction of mechanotransduction signaling pathway.
CONCLUSION
In distraction osteogenesis, mechanotransduction signal transduction is the core mechanism of bone regeneration in the distraction zone, which regulates cell behavior and tissue regeneration by converting mechanical stimulation into biochemical signals.
Mechanotransduction, Cellular/physiology*
;
Osteogenesis, Distraction/methods*
;
Humans
;
Signal Transduction
;
Bone Regeneration
;
Animals
;
Osteoblasts/metabolism*
;
Osteogenesis
;
Transforming Growth Factor beta/metabolism*
;
Ion Channels/metabolism*
;
Integrins/metabolism*
;
beta Catenin/metabolism*
;
Bone Morphogenetic Proteins/metabolism*
;
Smad Proteins/metabolism*
8.Research progress of spinal-pelvic characteristics in adolescent patients with idiopathic scoliosis.
Zi-Cheng WEI ; Zhi-Zhen LYU ; Zi-Han HUA ; Qiong XIA ; Tao LI ; Yuan-Shen HUANG ; Chao YANG ; Li-Jiang LYU
China Journal of Orthopaedics and Traumatology 2025;38(10):1076-1082
Adolescent idiopathic scoliosis (AIS) is a common spinal deformity in adolescents, with potential causes etiologies associated with mesenchymal stem cells, genetic factors, histological features, and biomechanical aspects. Biomechanically, the pelvis, serving as the central and majort load-bearing structure, exhibits morphological and alignment abnormalities highly correlated with the development of AIS. Recent studies have extensively explored three-dimensional pelvic parameters and kinematics, demonstrating that abnormal pelvic characteristics may contribute to AIS onset and progression and are increasingly incorporated into clinical interventions. This review summarizes sagittal and coronal features of the spine-pelvis, as well as the influence of three-dimensional kinematic features on the pathogenesis of AIS, providing insights for advancing the study of spine-pelvis features related to AIS.
Humans
;
Scoliosis/pathology*
;
Adolescent
;
Spine/pathology*
;
Pelvis/pathology*
;
Biomechanical Phenomena
9.Association between acupuncture and live birth rates after fresh embryo transfer: A cohort study based on different propensity score methods.
Xiao-Yan ZHENG ; Zi-Yi JIANG ; Yi-Ting LI ; Chao-Liang LI ; Hao ZHU ; Zheng YU ; Si-Yi YU ; Li-Li YANG ; Song-Yuan TANG ; Xing-Yu LÜ ; Fan-Rong LIANG ; Jie YANG
Journal of Integrative Medicine 2025;23(5):528-536
OBJECTIVE:
To explore the association between acupuncture during controlled ovarian hyperstimulation (COH) and the live birth rate (LBR) using different propensity score methods.
METHODS:
In this retrospective cohort study, eligible women who underwent a COH were divided into acupuncture and non-acupuncture groups. The primary outcome was LBR, as determined by propensity score matching (PSM). LBR was defined as the delivery of one or more living infants that reached a gestational age over 28 weeks after embryo transfer. The propensity score model encompassed 16 confounding variables. To validate the results, sensitivity analyses were conducted using three additional propensity score methods: propensity score adjustment, inverse probability weighting (IPW), and IPW with a "doubly robust" estimator.
RESULTS:
The primary cohort encompassed 9751 patients (1830 [18.76%] in the acupuncture group and 7921 [81.23%] in the non-acupuncture group). Following 1:1 PSM, a higher LBR was found in the acupuncture cohort (41.4% [755/1824] vs 36.4% [664/1824], with an odds ratio of 1.23 [95% confidence interval, 1.08-1.41]). Three additional propensity score methods produced essentially similar results. The risk of serious adverse events did not significantly differ between the two groups.
CONCLUSION
This retrospective study revealed an association between acupuncture and an increased LBR among patients undergoing COH, and that acupuncture is a safe and valuable treatment option. Please cite this article as: Zheng XY, Jiang ZY, Li YT, Li CL, Zhu H, Yu Z, Yu SY, Yang LL, Tang SY, Lü XY, Liang FR, Yang J. Association between acupuncture and live birth rates after fresh embryo transfer: A cohort study based on different propensity score methods. J Integr Med. 2025; 23(5):528-536.
Humans
;
Female
;
Propensity Score
;
Embryo Transfer
;
Adult
;
Acupuncture Therapy
;
Retrospective Studies
;
Pregnancy
;
Live Birth
;
Birth Rate
;
Cohort Studies
10.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*

Result Analysis
Print
Save
E-mail