1.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
2.Research progress of spinal-pelvic characteristics in adolescent patients with idiopathic scoliosis.
Zi-Cheng WEI ; Zhi-Zhen LYU ; Zi-Han HUA ; Qiong XIA ; Tao LI ; Yuan-Shen HUANG ; Chao YANG ; Li-Jiang LYU
China Journal of Orthopaedics and Traumatology 2025;38(10):1076-1082
Adolescent idiopathic scoliosis (AIS) is a common spinal deformity in adolescents, with potential causes etiologies associated with mesenchymal stem cells, genetic factors, histological features, and biomechanical aspects. Biomechanically, the pelvis, serving as the central and majort load-bearing structure, exhibits morphological and alignment abnormalities highly correlated with the development of AIS. Recent studies have extensively explored three-dimensional pelvic parameters and kinematics, demonstrating that abnormal pelvic characteristics may contribute to AIS onset and progression and are increasingly incorporated into clinical interventions. This review summarizes sagittal and coronal features of the spine-pelvis, as well as the influence of three-dimensional kinematic features on the pathogenesis of AIS, providing insights for advancing the study of spine-pelvis features related to AIS.
Humans
;
Scoliosis/pathology*
;
Adolescent
;
Spine/pathology*
;
Pelvis/pathology*
;
Biomechanical Phenomena
3.Therapeutic mechanism of Compound Xuanju Capsule on erectile dysfunction.
Zi-Jie LI ; Hao-Xiang XU ; Wei WANG ; Yue YANG ; Cheng-Lin YANG ; Zhi CAO ; Xiao-Ming ZHANG
National Journal of Andrology 2025;31(8):675-683
OBJECTIVE:
To investigate the pharmacological mechanism of Compound Xuanju Capsule in the treatment of erectile dysfunction (ED) by using network pharmacology and molecular docking technology.
METHODS:
The active ingredients and targets of Compound Xuanju Capsule were screened using Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP). TTD, OMIM, DrugBank and GeneCards databases were used to obtain genes related to ED, and the union of the results was taken as the disease genes of ED. The common target of drug and disease was taken as the potential target of Compound Xuanju Capsule in ED, and the drug-disease interaction network was constructed by using Cytoscape software. The protein-protein interaction (PPI) network was constructed by using String database, which was then imported into Cytoscape to identify the key target. Based on the drug-disease intersection genes, GO and KEGG enrichment analyses were performed to predict the relevant signaling pathways and molecular mechanisms of Compound Xuanju Capsule for the treatment of ED. Autodock software was used to perform molecular docking between the active ingredients and the core targets.
RESULTS:
Forty chemical components of Compound Xuanju Capsule were screened, and 239 predicted targets were obtained. A total of 1 907 ED-related genes were screened, and 97 common targets were identified between Compound Xuanju Capsule and ED, among which the core targets included EGFR, ESR1, HIF1A, PTGS2, and STAT3. The signaling pathways obtained by KEGG enrichment analysis included calcium signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, cGMP-PKG signaling pathway, relaxin signaling pathway, Serotonergic synapse signaling pathway. The molecular docking results showed that there were molecular binding sites between the key active ingredients and the core targets with strong binding activity.
CONCLUSION
Compound Xuanju Capsule may treat ED through multi-target pathways such as anti-inflammatory and improving cellular oxidative stress.
Drugs, Chinese Herbal/therapeutic use*
;
Erectile Dysfunction/drug therapy*
;
Molecular Docking Simulation
;
Male
;
Humans
;
Signal Transduction
;
Protein Interaction Maps
;
Network Pharmacology
;
Capsules
;
Medicine, Chinese Traditional
4.Tonifying kidney and activating blood therapy for the treatment of diabetic erectile dysfunction: A systematic review and meta-analysis.
Mao-Ke CHEN ; Ke-Cheng LI ; Jun-Long FENG ; Xiang-Fa LIN ; Wen-Xuan DONG ; Zi-Xiang GAO ; Hua-Nan ZHANG ; Hui CHEN ; Ji-Sheng WANG ; Bin WANG
National Journal of Andrology 2025;31(9):832-840
Objective: To systematically evaluate the clinical efficacy and safety of Tonifying kidney and activating blood therapy for the treatment of diabetic mellitus erectile dysfunction. Methods: China National Knowledge Infrastructure(CNKI), Wanfang Data, VIP, Chinese Biomedical Database(CBM), PubMed, Cochrane Library, Embase and Web of Science were searched from inception until October 20th of 2024,for randomized controlled trials of Tonifying kidney and activating blood therapy for the treatment of diabetic erectile dysfunction. Literature screening, quality evaluation, and data extraction were carried out in accordance with relevant standards. The software of RevMan5.4 was used for the analysis of publication bias. And meta-analysis was conducted to assess the impact of this therapy on IIEF-5, total effective rate, adverse reactions. The evidence levels according to the analysis results were evaluated. Results: Totally 19 RCTs were included, involving 1 612 patients. The result of meta-analysis indicated that Tonifying kidney and activating blood therapy had advantages on the improvement of IIEF-5 scores (MD=3.59,95%CI[2.14,5.03],P<0.01),total effective rate (OR=4.30,95%CI[3.29,5.32],P<0.000 01). However, there was no statistically significant difference in the incidence of adverse reactions(OR=0.98,95%CI[0.48,2.01],P=0.96) between the two groups. Conclusions: Tonifying kidney and activating blood therapy can improve the clinical efficacy and IIEF-5 score for the patients with diabetic erectile dysfunction. But considering the limited quantity of included studies, more high-quality studies still be needed to validate the therapeutic effect.
Humans
;
Male
;
Erectile Dysfunction/therapy*
;
Randomized Controlled Trials as Topic
;
Kidney
;
Medicine, Chinese Traditional
;
Diabetes Complications/therapy*
5.Association between atherogenic index of plasma trajectory and new-onset coronary heart disease in Chinese elderly people: a prospective cohort study.
Wan-Li HU ; Yv-Lin CHENG ; Dong-Hai SU ; Yv-Fang CUI ; Zi-Hao LI ; Ge-Fei LI ; Hai-Yun GAO ; Da-Tian GAO ; Xiao-Ke ZHANG ; Song-He SHI
Journal of Geriatric Cardiology 2025;22(10):835-843
BACKGROUND:
The atherogenic index of plasma (AIP) has been shown to be positively correlated with cardiovascular disease in previous studies. However, it is unclear whether elderly people with long-term high AIP levels are more likely to develop coronary heart disease (CHD). Therefore, the aim of this study was to investigate the relationship between AIP trajectory and CHD incidence in elderly people.
METHODS:
19,194 participants aged ≥ 60 years who had three AIP measurements between 2018 and 2020 were included in this study. AIP was defined as log10 (triglyceride/high-density lipoprotein cholesterol). The group-based trajectory model was used to identify different trajectory patterns of AIP from 2018 to 2020. Cox proportional hazards models were used to estimate the hazard ratio (HR) with 95% CI of CHD events between different trajectory groups from 2020 to 2023.
RESULTS:
Three different trajectory patterns were identified through group-based trajectory model: the low-level group (n = 7410, mean AIP: -0.25 to -0.17), the medium-level group (n = 9981, mean AIP: 0.02-0.08), and the high-level group (n = 1803, mean AIP: 0.38-0.42). During a mean follow-up of 2.65 years, a total of 1391 participants developed CHD. After adjusting for potential confounders, compared with the participants in the low-level group, the HR with 95% CI of the medium-level group and the high-level group were estimated to be 1.24 (1.10-1.40) and 1.43 (1.19-1.73), respectively. These findings remained consistent in subgroup analyses and sensitivity analyses.
CONCLUSIONS
There was a significant correlation between persistent high AIP level and increased CHD risk in the elderly. This suggests that monitoring the long-term changes in AIP is helpful to identify individuals at high CHD risk in elderly people.
6.Network Pharmacology and in vitro Experimental Verification on Intervention of Oridonin on Non-Small Cell Lung Cancer.
Ke CHANG ; Li-Fei ZHU ; Ting-Ting WU ; Si-Qi ZHANG ; Zi-Cheng YU
Chinese journal of integrative medicine 2025;31(4):347-356
OBJECTIVE:
To explore the key target molecules and potential mechanisms of oridonin against non-small cell lung cancer (NSCLC).
METHODS:
The target molecules of oridonin were retrieved from SEA, STITCH, SuperPred and TargetPred databases; target genes associated with the treatment of NSCLC were retrieved from GeneCards, DisGeNET and TTD databases. Then, the overlapping target molecules between the drug and the disease were identified. The protein-protein interaction (PPI) was constructed using the STRING database according to overlapping targets, and Cytoscape was used to screen for key targets. Molecular docking verification were performed using AutoDockTools and PyMOL software. Using the DAVID database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted. The impact of oridonin on the proliferation and apoptosis of NSCLC cells was assessed using cell counting kit-8, cell proliferation EdU image kit, and Annexin V-FITC/PI apoptosis kit respectively. Moreover, real-time quantitative PCR and Western blot were used to verify the potential mechanisms.
RESULTS:
Fifty-six target molecules and 12 key target molecules of oridonin involved in NSCLC treatment were identified, including tumor protein 53 (TP53), Caspase-3, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase kinase 8 (MAPK8), and mammalian target of rapamycin (mTOR). Molecular docking showed that oridonin and its key target molecules bind spontaneously. GO and KEGG enrichment analyses revealed cancer, apoptosis, phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), and other signaling pathways. In vitro experiments showed that oridonin inhibited the proliferation, induced apoptosis, downregulated the expression of Bcl-2 and Akt, and upregulated the expression of Caspase-3.
CONCLUSION
Oridonin can act on multiple targets and pathways to exert its inhibitory effects on NSCLC, and its mechanism may be related to upregulating the expression of Caspase-3 and downregulating the expressions of Akt and Bcl-2.
Diterpenes, Kaurane/chemistry*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Humans
;
Network Pharmacology
;
Lung Neoplasms/pathology*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Cell Line, Tumor
;
Signal Transduction/drug effects*
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Reproducibility of Results
;
Gene Ontology
7.Impact of Spinal Manipulative Therapy on Brain Function and Pain Alleviation in Lumbar Disc Herniation: A Resting-State fMRI Study.
Xing-Chen ZHOU ; Shuang WU ; Kai-Zheng WANG ; Long-Hao CHEN ; Zi-Cheng WEI ; Tao LI ; Zi-Han HUA ; Qiong XIA ; Zhi-Zhen LYU ; Li-Jiang LYU
Chinese journal of integrative medicine 2025;31(2):108-117
OBJECTIVE:
To elucidate how spinal manipulative therapy (SMT) exerts its analgesic effects through regulating brain function in lumbar disc herniation (LDH) patients by utilizing resting-state functional magnetic resonance imaging (rs-fMRI).
METHODS:
From September 2021 to September 2023, we enrolled LDH patients (LDH group, n=31) and age- and sex-matched healthy controls (HCs, n=28). LDH group underwent rs-fMRI at 2 distinct time points (TPs): prior to the initiation of SMT (TP1) and subsequent to the completion of the SMT sessions (TP2). SMT was administered once every other day for 30 min per session, totally 14 treatment sessions over a span of 4 weeks. HCs did not receive SMT treatment and underwent only one fMRI scan. Additionally, participants in LDH group completed clinical questionnaires on pain using the Visual Analog Scale (VAS) and the Japanese Orthopedic Association (JOA) score, whereas HCs did not undergo clinical scale assessments. The effects on the brain were jointly characterized using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo). Correlation analyses were conducted between specific brain regions and clinical scales.
RESULTS:
Following SMT treatment, pain symptoms in LDH patients were notably alleviated and accompanied by evident activation of effects in the brain. In comparison to TP1, TP2 exhibited the most significant increase in ALFF values for Temporal_Sup_R and the most notable decrease in ALFF values for Paracentral_Lobule_L (voxelwise P<0.005; clusters >30; FDR correction). Additionally, the most substantial enhancement in ReHo values was observed for the Cuneus_R, while the most prominent reduction was noted for the Olfactory_R (voxelwise P<0.005; clusters >30; FDR correction). Moreover, a comparative analysis revealed that, in contrast to HCs, LDH patients at TP1 exhibited the most significant increase in ALFF values for Temporal_Pole_Sup_L and the most notable decrease in ALFF values for Frontal_Mid_L (voxelwise P<0.005; clusters >30; FDR correction). Furthermore, the most significant enhancement in ReHo values was observed for Postcentral_L, while the most prominent reduction was identified for ParaHippocampal_L (voxelwise P<0.005; clusters >30; FDR correction). Notably, correlation analysis with clinical scales revealed a robust positive correlation between the Cuneus_R score and the rate of change in the VAS score (r=0.9333, P<0.0001).
CONCLUSIONS
Long-term chronic lower back pain in patients with LDH manifests significant activation of the "AUN-DMN-S1-SAN" neural circuitry. The visual network, represented by the Cuneus_R, is highly likely to be a key brain network in which the analgesic efficacy of SMT becomes effective in treating LDH patients. (Trial registration No. NCT06277739).
Humans
;
Magnetic Resonance Imaging
;
Intervertebral Disc Displacement/diagnostic imaging*
;
Male
;
Female
;
Brain/diagnostic imaging*
;
Adult
;
Manipulation, Spinal/methods*
;
Middle Aged
;
Lumbar Vertebrae/physiopathology*
;
Pain Management
;
Rest
;
Case-Control Studies
8.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
9.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
10.Lumbar Spondylolysis in Chinese Adults: Prevalence and Musculoskeletal Conditions.
Dong YAN ; Yan Dong LIU ; Ling WANG ; Kai LI ; Wen Shuang ZHANG ; Yi YUAN ; Jian GENG ; Kang Kang MA ; Feng Yun ZHOU ; Zi Tong CHENG ; Xiao Guang CHENG
Biomedical and Environmental Sciences 2025;38(5):598-606
OBJECTIVE:
To determine the prevalence of lumbar spondylolysis (LS) and the proportion of spondylolytic spondylolisthesis (SS) in China, and to evaluate the musculoskeletal status of patients with LS and SS.
METHODS:
Spine Computed Tomography (CT) images were collected from community populations aged 40 and above in a nationwide multi-center project. LS was diagnosed, and SS was graded by an experienced radiologist. Bone mineral density (BMD) and paraspinal muscle parameters were quantified based on CT images.
RESULTS:
One hundred and seventeen patients of a total of 3,317 individuals were diagnosed with LS, corresponding to a prevalence rate of 3.53%. 63 of the 1,214 males (5.18%) and 54 of the 2,103 females (2.57%) were diagnosed with LS. SS occurred in 64/121 vertebrae (52.89%). BMD was not associated with LS ( P = 0.341). The L5 extensor paraspinal muscle density was higher in the LS group than in the non-LS group. In the LS group, patients with SS had a smaller L5 paraspinal extensor muscle cross-sectional area than those without SS ( P = 0.003).
CONCLUSION
The prevalence of LS in Chinese adults was 3.53%, with prevalence rates of 5.18% in males and 2.57% in females. Patients with LS have higher muscle density, whereas those with SS have smaller muscle cross-sectional areas at the L5 level.
Humans
;
Male
;
Female
;
Middle Aged
;
China/epidemiology*
;
Prevalence
;
Adult
;
Lumbar Vertebrae/diagnostic imaging*
;
Spondylolysis/diagnostic imaging*
;
Aged
;
Bone Density
;
Tomography, X-Ray Computed
;
Aged, 80 and over
;
Spondylolisthesis/epidemiology*
;
East Asian People

Result Analysis
Print
Save
E-mail