1.The Ameliorate Effect of Piezo1 Signaling Pathway on Diabetes Mellitus Type 2 in Exercise Intervention
Progress in Biochemistry and Biophysics 2025;52(2):290-298
Diabetes mellitus type 2 (T2DM) is one of the most common metabolic diseases in the world and has a significant impact on the health of patients. As a key factor in cellular mechanical transduction, Piezo1 protein plays a crucial role in regulating the basic life activities of the body. By participating in energy metabolism, it not only promotes the improvement of basic metabolic rate, but also helps to maintain the stability of the internal environment of the body. The activation of Piezo1 pathway has a significant effect on the release of insulin by islet beta cells, and also plays an important role in the production of adipose tissue after food intake. This study reviews the effects of exercise intervention on the expression and function of Piezo1 protein, as well as its role in metabolic regulation and insulin level regulation in T2DM patients. The study showed that a modest exercise intervention activated Piezo1 signaling pathway, which improved insulin sensitivity and improved sugar metabolism. In addition, the activation of Piezo1 pathway is closely related to the metabolic regulation of adipose tissue, helping to regulate the differentiation and maturation of adipose cells, thereby affecting the metabolic function of adipose tissue. Based on a comprehensive analysis of existing literature, Piezo1 pathway is found to play a complex role in the pathogenesis of T2DM. Exercise intervention, as a non-drug therapy, provides a new strategy for the treatment of T2DM by activating Piezo1 signaling pathway. However, the exact mechanism of action of Piezo1 pathway in T2DM still needs further investigation. Future studies should focus on the interaction between the Piezo1 pathway and T2DM, and how to regulate the Piezo1 pathway to optimize treatment for T2DM. The effects of exercise intervention on Piezo1 protein and its role in metabolic regulation and insulin level regulation of T2DM patients were comprehensively analyzed in this paper, aiming to provide a new perspective for further research and development of therapeutic strategies for metabolic diseases such as diabetes and obesity.
2.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
3.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
4.Alpiniae Oxyphyllae Fructus-Saposhnikoviae Radix regulates NLRP3 inflammasome to ameliorate inflammatory response in diabetic kidney disease mice through PI3K/Akt/mTOR signaling pathway.
Zi-Jie YAN ; Lin ZHANG ; Xin-Yao HAN ; Tian-Peng MA ; Song-Jing ZHOU
China Journal of Chinese Materia Medica 2025;50(10):2798-2809
This study aims to evaluate the therapeutic effect of Alpiniae Oxyphyllae Fructus-Saposhnikoviae Radix(AOF-SR) in a diabetic kidney disease(DKD) mouse model, explore its potential mechanism in regulating the NOD-like receptor protein 3(NLRP3) inflammasome via phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathway, and provide new theoretical support for traditional Chinese medicine(TCM) intervention in DKD. Using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), the active ingredients and potential targets of AOF-SR were screened and its molecular mechanisms were investigated through molecular docking, molecular dynamics simulations, and experimental validation. The db/db mice were randomly divided into four groups: model group, low-dose AOF-SR group, high-dose AOF-SR group, and canagliflozin group. The db/m mice served as normal group. After one week of acclimatization, the mice underwent drug intervention. Starting from one week after treatment, body weight, blood glucose levels, and 24-hour urinary protein(24hUP) were measured every two weeks. After 13 weeks of administration, tissue collection and indicator detection were performed. Blood glucose, 24hUP, urinary microalbumin(mAlb), serum creatinine(Scr), and blood urea nitrogen(BUN) levels were determined. Pathological changes in kidney tissue were observed using hematoxylin-eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of serum IL-1β, IL-18, and caspase-1, while RT-qPCR was employed to measure the mRNA expression levels of IL-1β, IL-18, caspase-1, and NLRP3. Western blot was used to assess the protein expression levels of NLRP3, PI3K, p-Akt, Akt, p-mTOR, and mTOR. Network pharmacology analysis indicated that wogonin, pinocembrin, hancinol, and kaempferol were the core compounds for drug treatment of the disease. Molecular docking and molecular dynamics simulations showed that core compounds, particularly wogonin, could specifically bind to PIK3R1, thereby regulating the PI3K/Akt/mTOR pathway. The experimental results indicated that both low and high doses of AOF-SR and canagliflozin significantly reduced blood glucose, 24hUP, mAlb, Scr, and BUN levels in db/db mice, while improving kidney pathological damage and inflammatory cell infiltration. Moreover, the treatments reduced the mRNA expression levels of caspase-1, IL-1β, and IL-18 in the kidneys of db/db mice, as well as the secretion of these factors in the serum. The drugs also inhibited the mRNA and protein expression levels of NLRP3 in the kidneys of db/db mice and decreased the protein levels of PI3K, p-Akt/Akt, and p-mTOR/mTOR. In conclusion, AOF-SR may improve kidney inflammation in DKD mice by regulating the PI3K/Akt/mTOR signaling pathway and inhibiting NLRP3 inflammasome activation.
Animals
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Signal Transduction/drug effects*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Diabetic Nephropathies/metabolism*
;
Inflammasomes/drug effects*
;
Male
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Mice, Inbred C57BL
5.Differences in intestinal absorption characteristics of Rubus multibracteatus extract in normal and inflammatory pain model rats by in-vitro everted intestine sac method.
Ming-Li BAO ; Qing ZHANG ; Yang JIN ; Yi CHEN ; Jian-Qing PENG ; Si-Ying CHEN ; Zhi-Jie MA ; Jian LIAO ; Jing HUANG ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2025;50(16):4690-4704
This study compared the differences in intestinal absorption characteristics of eleven active components in Rubus multibracteatus(RM) extract(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, epicatechin, catechin, xanthotoxin, p-coumaric acid, caffeic acid, and apigenin-7-O-glucuronide) between normal rats and inflammatory pain model rats using the in-vitro everted intestinal sac model. The RM extract was administered at absorption concentrations of 25.0, 50.0, and 100.0 mg·mL~(-1). The contents of the eleven components in intestinal absorption solution samples were quantified by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), and their cumulative absorption(Q) and absorption rate constant(K_a) were calculated to evaluate the absorption characteristics of these components in normal rats and inflammatory pain model rats. The results show that except for catechin, epicatechin, and caffeic acid, the cumulative absorption-time curves of the other eight components(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, xanthotoxin, p-coumaric acid, and apigenin-7-O-glucuronide) exhibit an upward trend without saturation, with correlation coefficients(R~2) all > 0.9, indicating linear absorption. However, the overall absorption of all components is not dose-dependent with increasing concentration, suggesting that their absorption mechanisms are not solely passive diffusion. In both normal and model rats, the jejunum shows the highest absorption for all components except xanthotoxin. The overall absorption of seven components(excluding protocatechuic acid, caffeic acid, apigenin-7-O-glucuronide, and luteoloside) in normal rats is better than that in model rats across all intestinal segments. These findings indicate that the pathological state of inflammatory pain alters the intestinal absorption of RM extract, and its mechanism needs further investigation.
Animals
;
Rats
;
Intestinal Absorption/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/metabolism*
;
Disease Models, Animal
;
Pain/metabolism*
;
Intestines/drug effects*
;
Intestinal Mucosa/metabolism*
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
8.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
9.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
10.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.

Result Analysis
Print
Save
E-mail