1.eIF3a function in immunity and protection against severe sepsis by regulating B cell quantity and function through m6A modification.
Qianying OUYANG ; Jiajia CUI ; Yang WANG ; Ke LIU ; Yan ZHAN ; Wei ZHUO ; Juan CHEN ; Honghao ZHOU ; Chenhui LUO ; Jianming XIA ; Liansheng WANG ; Chengxian GUO ; Jianting ZHANG ; Zhaoqian LIU ; Jiye YIN
Acta Pharmaceutica Sinica B 2025;15(3):1571-1588
eIF3a is a N 6-methyladenosine (m6A) reader that regulates mRNA translation by recognizing m6A modifications of these mRNAs. It has been suggested that eIF3a may play an important role in regulating translation initiation via m6A during infection when canonical cap-dependent initiation is inhibited. However, the death of animal model studies impedes our understanding of the functional significance of eIF3a in immunity and regulation in vivo. In this study, we investigated the in vivo function of eIF3a using eIF3a knockout and knockdown mouse models and found that eIF3a deficiency resulted in splenic tissue structural disruption and multi-organ damage, which contributed to severe sepsis induced by Lipopolysaccharide (LPS). Ectopic eIF3a overexpression in the eIF3a knockdown mice rescued mice from LPS-induced severe sepsis. We further showed that eIF3a maintains a functional and healthy immune system by regulating B cell function and quantity through m6A modification of mRNAs. These findings unveil a novel mechanism underlying sepsis, implicating the pivotal role of B cells in this complex disease process regulated by eIF3a. Furthermore, eIF3a may be used to develop a potential strategy for treating sepsis.
2.Exploring the mechanism of Xiaoaiping Injection inhibiting autophagy in prostate cancer based on proteomics.
Qiuping ZHANG ; Qiuju HUANG ; Zhiping CHENG ; Wei XUE ; Shoushi LIU ; Yunnuo LIAO ; Xiaolan LI ; Xin CHEN ; Yaoyao HAN ; Dan ZHU ; Zhiheng SU ; Xin YANG ; Zhuo LUO ; Hongwei GUO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):64-76
Xiaoaiping (XAP) Injection demonstrates the anti-prostate cancer (PCa) effects, yet the underlying mechanism remains unclear. This study aims to investigate the impact of XAP on PCa and elucidate its mechanism of action. PCa cell proliferation was evaluated using a cell counting kit-8 (CCK-8) assay. Cell apoptosis was assessed through Hoechst staining and Western blotting assays. Proteomics technology was employed to identify key molecules and significant signaling pathways modulated by XAP in PCa cells. To further validate potential key genes and important pathways, a series of assays were conducted, including acridine orange (AO) staining, transmission electron microscopy, and immunofluorescence assays. The molecular mechanism of XAP against PCa in vivo was examined using a PC3 xenograft mouse model. Results demonstrated that XAP significantly inhibited cell proliferation in multiple PCa cell lines. In C4-2 and prostate cancer cell line-3 (PC3) cells, XAP induced cellular apoptosis, evidenced by reduced B-cell lymphoma 2 (Bcl-2) levels and elevated Bcl-2-associated X (Bax) levels. Proteomic, immunofluorescence, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) investigations revealed a strong correlation between forkhead box O3a (FoxO3a) autophagic degradation and the anti-PCa action of XAP. XAP hindered autophagy by reducing the expression levels of autophagy-related protein 5 (Atg5)/autophagy-related protein 12 (Atg12) and enhancing FoxO3a expression and nuclear translocation. Furthermore, XAP exhibited potent anti-PCa action in PC3 xenograft mice and triggered FoxO3a nuclear translocation in tumor tissue. These findings suggest that XAP induces PCa apoptosis via inhibition of FoxO3a autophagic degradation, potentially offering a novel perspective on XAP injection as an effective anticancer therapy for PCa.
Male
;
Humans
;
Prostatic Neoplasms/physiopathology*
;
Autophagy/drug effects*
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Proteomics
;
Mice
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Forkhead Box Protein O3/genetics*
;
Xenograft Model Antitumor Assays
;
Mice, Nude
;
Mice, Inbred BALB C
3.Discovery of a normal-tension glaucoma-suspect rhesus macaque with craniocerebral injury: Hints of elevated translaminar cribrosa pressure difference.
Jian WU ; Qi ZHANG ; Xu JIA ; Yingting ZHU ; Zhidong LI ; Shu TU ; Ling ZHAO ; Yifan DU ; Wei LIU ; Jiaoyan REN ; Liangzhi XU ; Hanxiang YU ; Fagao LUO ; Wenru SU ; Ningli WANG ; Yehong ZHUO
Chinese Medical Journal 2024;137(4):484-486
4.Clinical application of split liver transplantation: a single center report of 203 cases
Qing YANG ; Shuhong YI ; Binsheng FU ; Tong ZHANG ; Kaining ZENG ; Xiao FENG ; Jia YAO ; Hui TANG ; Hua LI ; Jian ZHANG ; Yingcai ZHANG ; Huimin YI ; Haijin LYU ; Jianrong LIU ; Gangjian LUO ; Mian GE ; Weifeng YAO ; Fangfei REN ; Jinfeng ZHUO ; Hui LUO ; Liping ZHU ; Jie REN ; Yan LYU ; Kexin WANG ; Wei LIU ; Guihua CHEN ; Yang YANG
Chinese Journal of Surgery 2024;62(4):324-330
Objective:To investigate the safety and therapeutic effect of split liver transplantation (SLT) in clinical application.Methods:This is a retrospective case-series study. The clinical data of 203 consecutive SLT, 79 living donor liver transplantation (LDLT) and 1 298 whole liver transplantation (WLT) performed at the Third Affiliated Hospital of Sun Yat-sen University from July 2014 to July 2023 were retrospectively analyzed. Two hundred and three SLT liver grafts were obtained from 109 donors. One hundred and twenty-seven grafts were generated by in vitro splitting and 76 grafts were generated by in vivo splitting. There were 90 adult recipients and 113 pediatric recipients. According to time, SLT patients were divided into two groups: the early SLT group (40 cases, from July 2014 to December 2017) and the mature SLT technology group (163 cases, from January 2018 to July 2023). The survival of each group was analyzed and the main factors affecting the survival rate of SLT were analyzed. The Kaplan-Meier method and Log-rank test were used for survival analysis.Results:The cumulative survival rates at 1-, 3-, and 5-year were 74.58%, 71.47%, and 71.47% in the early SLT group, and 88.03%, 87.23%, and 87.23% in the mature SLT group, respectively. Survival rates in the mature SLT group were significantly higher than those in the early SLT group ( χ2=5.560, P=0.018). The cumulative survival rates at 1-, 3- and 5-year were 93.41%, 93.41%, 89.95% in the LDLT group and 87.38%, 81.98%, 77.04% in the WLT group, respectively. There was no significant difference among the mature SLT group, the LDLT group and the WLT group ( χ2=4.016, P=0.134). Abdominal hemorrhage, infection, primary liver graft nonfunction,and portal vein thrombosis were the main causes of early postoperative death. Conclusion:SLT can achieve results comparable to those of WLT and LDLT in mature technology liver transplant centers, but it needs to go through a certain time learning curve.
5.Expert consensus on clinical application of 177Lu-prostate specific membrane antigen radio-ligand therapy in prostate cancer
Guobing LIU ; Weihai ZHUO ; Yushen GU ; Zhi YANG ; Yue CHEN ; Wei FAN ; Jianming GUO ; Jian TAN ; Xiaohua ZHU ; Li HUO ; Xiaoli LAN ; Biao LI ; Weibing MIAO ; Shaoli SONG ; Hao XU ; Rong TIAN ; Quanyong LUO ; Feng WANG ; Xuemei WANG ; Aimin YANG ; Dong DAI ; Zhiyong DENG ; Jinhua ZHAO ; Xiaoliang CHEN ; Yan FAN ; Zairong GAO ; Xingmin HAN ; Ningyi JIANG ; Anren KUANG ; Yansong LIN ; Fugeng LIU ; Cen LOU ; Xinhui SU ; Lijun TANG ; Hui WANG ; Xinlu WANG ; Fuzhou YANG ; Hui YANG ; Xinming ZHAO ; Bo YANG ; Xiaodong HUANG ; Jiliang CHEN ; Sijin LI ; Jing WANG ; Yaming LI ; Hongcheng SHI
Chinese Journal of Clinical Medicine 2024;31(5):844-850,封3
177Lu-prostate specific membrane antigen(PSMA)radio-ligand therapy has been approved abroad for advanced prostate cancer and has been in several clinical trials in China.Based on domestic clinical practice and experimental data and referred to international experience and viewpoints,the expert group forms a consensus on the clinical application of 177Lu-PSMA radio-ligand therapy in prostate cancer to guide clinical practice.
6.Inhibitory effect of flagellin protein combined with rapamycin on 4T1 breast cancer
Li LUO ; Jing ZHANG ; Zhaozhen ZHUO ; Xi CHEN ; Jun YUAN ; Wei LI
Immunological Journal 2024;40(1):39-45
This study was performed to explore the effect of flagellin+rapamycin on the growth and metastasis of 4T1 breast cancer in tumor-bearing mice,and their regulatory effect on several immunocytes.4T1 cell line was applied to establish an breast cancer model in Balb/c mice,which then injected with flagellin+rapamycin,and the volume and inhibition rate of tumor were recorded.MTT assay was used to detect the inhibitory effect of flagellin+rapamycin against 4T1 cells.Data showed that the combination of flagellin and rapamycin had the best inhibition effect on 4T1 cells,and the same results were found in animal model experiments.Flow cytometry result indicated that flagellin+rapamycin significantly down-regulated the levels of CD11b+Gr-1+myeloid-derived suppressor cells(MDSCs)and CD11b+F4/80+tumor-associated macrophages(TAMs)of tumor-bearing mice.Furthermore,flagellin+rapamycin alleviates the metastasis of 4T1 cancer cells into liver and lung.Taken together,flagellin+rapamycin can inhibit proliferation and metastasis of 4T1 cells,thus exert antitumor effects in mice,which may related with its regulatory effects on immunocytes in tumor microenvironment.
7.Clinical application of split liver transplantation: a single center report of 203 cases
Qing YANG ; Shuhong YI ; Binsheng FU ; Tong ZHANG ; Kaining ZENG ; Xiao FENG ; Jia YAO ; Hui TANG ; Hua LI ; Jian ZHANG ; Yingcai ZHANG ; Huimin YI ; Haijin LYU ; Jianrong LIU ; Gangjian LUO ; Mian GE ; Weifeng YAO ; Fangfei REN ; Jinfeng ZHUO ; Hui LUO ; Liping ZHU ; Jie REN ; Yan LYU ; Kexin WANG ; Wei LIU ; Guihua CHEN ; Yang YANG
Chinese Journal of Surgery 2024;62(4):324-330
Objective:To investigate the safety and therapeutic effect of split liver transplantation (SLT) in clinical application.Methods:This is a retrospective case-series study. The clinical data of 203 consecutive SLT, 79 living donor liver transplantation (LDLT) and 1 298 whole liver transplantation (WLT) performed at the Third Affiliated Hospital of Sun Yat-sen University from July 2014 to July 2023 were retrospectively analyzed. Two hundred and three SLT liver grafts were obtained from 109 donors. One hundred and twenty-seven grafts were generated by in vitro splitting and 76 grafts were generated by in vivo splitting. There were 90 adult recipients and 113 pediatric recipients. According to time, SLT patients were divided into two groups: the early SLT group (40 cases, from July 2014 to December 2017) and the mature SLT technology group (163 cases, from January 2018 to July 2023). The survival of each group was analyzed and the main factors affecting the survival rate of SLT were analyzed. The Kaplan-Meier method and Log-rank test were used for survival analysis.Results:The cumulative survival rates at 1-, 3-, and 5-year were 74.58%, 71.47%, and 71.47% in the early SLT group, and 88.03%, 87.23%, and 87.23% in the mature SLT group, respectively. Survival rates in the mature SLT group were significantly higher than those in the early SLT group ( χ2=5.560, P=0.018). The cumulative survival rates at 1-, 3- and 5-year were 93.41%, 93.41%, 89.95% in the LDLT group and 87.38%, 81.98%, 77.04% in the WLT group, respectively. There was no significant difference among the mature SLT group, the LDLT group and the WLT group ( χ2=4.016, P=0.134). Abdominal hemorrhage, infection, primary liver graft nonfunction,and portal vein thrombosis were the main causes of early postoperative death. Conclusion:SLT can achieve results comparable to those of WLT and LDLT in mature technology liver transplant centers, but it needs to go through a certain time learning curve.
8. Mechanism of ciRS-7 silencing to reverse cisplatin resistance in gastric cancer cells by targeting miR-944
Wen-E WEI ; Cui-Ping GUO ; Yin-Zhuo DIAO ; Yu-Shuang LUO
Chinese Pharmacological Bulletin 2023;39(7):1325-1332
Aim To investigate the effect of silencing circRNA ciRS-7 on cisplatin resistance of gastric cancer cells and its related mechanism. Methods Cisplatin-resistant gastric cancer cells HGC-27/DDP were constructed, ciRS-7 was silenced and HGC-27/DDP cells were treated with cisplatin. Real-time quantitative PCR (qRT-PCR) was used to detect the expression levels of ciRS-7 and microrNA-944 (miR-944). Cell counting kit-8 (CCK-8) was used to detect cell survival rate. Clone formation assay was used to detect the number of clones. Western blot was used to detect the protein expression levels of CyclinD1, proliferating cell nuclear antigen (PCNA), B-lymphocytoma-2-associated X protein (Bax), B-lymphocytoma-2 (Bcl-2) and cleaved aspartate-specific cysteine proteinase 3 (cleaved-caspase-3). Flow cytometry was used to detect cell apoptosis rate. In situ end labeling (TUNEL) was used to detect apoptosis index. Dual luciferase assay was used to verify the targeting relationship between ciRS-7 and miR-944. Results CiRS-7 was highly expressed in cisplatin-resistant gastric cancer tissues and cells, while miR-944 was low expressed in cisplatin-resistant gastric cancer tissues and cells. The survival rate, clonal formation number, protein expression levels of CyclinD1, PCNA and Bcl-2 in cisplatin-treated HGC-27/DDP cells were significantly reduced by silencing ciRS-7, while ciRS-7 expression level, apoptosis rate, apoptosis index, Bax, cleaved-caspase-3 protein expression levels of cisplatin-treated HGC-27/DDP cells were significantly raised. CiRS-7 targetedly inhibited the expression of miR-944. Conclusions Silencing ciRS-7 can reverse cisplatin resistance of gastric cancer cells, and the mechanism may be related to the promotion of miR-944 expression by silencing ciRS-7.
9. Apoptosis of small cell lung cancer cells H1688 and H446 induced by nitidine chloride through PI3K/Akt/Bcl-2/caspase-3/PARP pathway
Fei YU ; Zhuo LUO ; Xiao-Xiang MO ; Xiao-Cheng MO ; Wei-Dan TAN ; Jing-Chuan HE ; Zhi-Hua DENG ; Jie YANG ; Fei YU ; Li LI ; Xiao-Ju SHEN
Chinese Pharmacological Bulletin 2022;38(7):1023-1031
Aim To explore the apoptosis of small eell lung eancer ( SCLC ) eells HI688 and H446 induced by nitidine chloride and its possible mechanism.Methods The effect of nitidine chloride or cisplatin ( DDP ) on the activity of SCLC cells was detected by j J MTT method; the morphological changes of cells trea¬ted with nitidine chloride or DDP were observed by in- verted fluorescence microscope and HE staining; the effect of nitidine chloride or DDP on apoptosis was de¬tected by flow cytometry; the effect of apoptosis inhibi¬tor Z-VAD-FMK on apoptosis induced by nitidine chlo¬ride or DDP was detected by MTT method.The expres¬sions of Bax , Bcl-2, caspase-3 , PARP, p-PI3K and p- Akt in the cells treated with nitidine chloride or DDP were detected by Western blot.Results MTT results showed that the viability of SCLC cells was significantly reduced after 48 hours of treatment with nitidine chlo¬ ride; compared with DDP, nitidine chloride could in¬hibit SCLC cells with less IC50; inverted fluorescence microscope and HE staining showed that nitidine chlo¬ride could induce apoptosis in SCLC cells, similar to DDP; flow cytometry showed that nitidine chloride J J could induce apoptosis in SCLC cells.The results of MTT assay showed that the inhibitory effect of nitidine chloride on apoptosis of SCLC cells could be partially antagonized by apoptosis inhibitor Z-VAD-FMK.West¬ern blot results showed that, similar to DDP, nitidine chloride could inhibit the expression of PI3K and Akt, increase Bax, inhibit Be 1-2, and promote the cleavage of caspase-3 and PAH P.Conclusion Nitidine chlo¬ride can induce apoptosis of SCLC cells by inhibiting the activation of P13K and Akt.
10.Prediction of trends for fine-scale spread of Oncomelania hupensis in Shanghai Municipality based on supervised machine learning models.
Yan Feng GONG ; Zhuo Wei LUO ; Jia Xin FENG ; Jing Bo XUE ; Zhao Yu GUO ; Yan Jun JIN ; Qing YU ; Shang XIA ; Shan LÜ ; Jing XU ; Shi Zhu LI
Chinese Journal of Schistosomiasis Control 2022;34(3):241-251
OBJECTIVE:
To predict the trends for fine-scale spread of Oncomelania hupensis based on supervised machine learning models in Shanghai Municipality, so as to provide insights into precision O. hupensis snail control.
METHODS:
Based on 2016 O. hupensis snail survey data in Shanghai Municipality and climatic, geographical, vegetation and socioeconomic data relating to O. hupensis snail distribution, seven supervised machine learning models were created to predict the risk of snail spread in Shanghai, including decision tree, random forest, generalized boosted model, support vector machine, naive Bayes, k-nearest neighbor and C5.0. The performance of seven models for predicting snail spread was evaluated with the area under the receiver operating characteristic curve (AUC), F1-score and accuracy, and optimal models were selected to identify the environmental variables affecting snail spread and predict the areas at risk of snail spread in Shanghai Municipality.
RESULTS:
Seven supervised machine learning models were successfully created to predict the risk of snail spread in Shanghai Municipality, and random forest (AUC = 0.901, F1-score = 0.840, ACC = 0.797) and generalized boosted model (AUC= 0.889, F1-score = 0.869, ACC = 0.835) showed higher predictive performance than other models. Random forest analysis showed that the three most important climatic variables contributing to snail spread in Shanghai included aridity (11.87%), ≥ 0 °C annual accumulated temperature (10.19%), moisture index (10.18%) and average annual precipitation (9.86%), the two most important vegetation variables included the vegetation index of the first quarter (8.30%) and vegetation index of the second quarter (7.69%). Snails were more likely to spread at aridity of < 0.87, ≥ 0 °C annual accumulated temperature of 5 550 to 5 675 °C, moisture index of > 39% and average annual precipitation of > 1 180 mm, and with the vegetation index of the first quarter of > 0.4 and the vegetation index of the first quarter of > 0.6. According to the water resource developments and township administrative maps, the areas at risk of snail spread were mainly predicted in 10 townships/subdistricts, covering the Xipian, Dongpian and Tainan sections of southern Shanghai.
CONCLUSIONS
Supervised machine learning models are effective to predict the risk of fine-scale O. hupensis snail spread and identify the environmental determinants relating to snail spread. The areas at risk of O. hupensis snail spread are mainly located in southwestern Songjiang District, northwestern Jinshan District and southeastern Qingpu District of Shanghai Municipality.
Animals
;
Bayes Theorem
;
China/epidemiology*
;
Ecosystem
;
Gastropoda
;
Supervised Machine Learning

Result Analysis
Print
Save
E-mail