1.A Fitting Method for Photoacoustic Pump-probe Imaging Based on Phase Correction
Zhuo-Jun XIE ; Hong-Wen ZHONG ; Run-Xiang LIU ; Bo WANG ; Ping XUE ; Bin HE
Progress in Biochemistry and Biophysics 2025;52(2):525-532
ObjectivePhotoacoustic pump-probe imaging can effectively eliminate the interference of blood background signal in traditional photoacoustic imaging, and realize the imaging of weak phosphorescence molecules and their triplet lifetimes in deep tissues. However, background differential noise in photoacoustic pump-probe imaging often leads to large fitting results of phosphorescent molecule concentration and triplet lifetime. Therefore, this paper proposes a novel triplet lifetime fitting method for photoacoustic pump-probe imaging. By extracting the phase of the triplet differential signal and the background noise, the fitting bias caused by the background noise can be effectively corrected. MethodsThe advantages and feasibility of the proposed algorithm are verified by numerical simulation, phantom and in vivo experiments, respectively. ResultsIn the numerical simulation, under the condition of noise intensity being 10% of the signal amplitude, the new method can optimize the fitting deviation from 48.5% to about 5%, and has a higher exclusion coefficient (0.88>0.79), which greatly improves the fitting accuracy. The high specificity imaging ability of photoacoustic pump imaging for phosphorescent molecules has been demonstrated by phantom experiments. In vivo experiments have verified the feasibility of the new fitting method proposed in this paper for fitting phosphoometric lifetime to monitor oxygen partial pressure content during photodynamic therapy of tumors in nude mice. ConclusionThis work will play an important role in promoting the application of photoacoustic pump-probe imaging in biomedicine.
2.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*
3.Transcatheter edge-to-edge mitral valve repair for the treatment of mitral valve prolapse with cleft:a case report
Yun-Long MA ; Ming-Jun HE ; Xiang HAO ; Shun WANG ; Xiao-Zhen ZHUO ; Zu-Yi YUAN ; Ke HAN
Chinese Journal of Interventional Cardiology 2024;32(5):284-287
Mitral valve prolapse is one of the common causes of mitral regurgitation.Mitral valve prolapse complicated with leaflet cleft is rare in clinical practice,which most often undergo surgical mitral valve repair or mitral valve replacement.We report a case of mitral valve prolapse with posterior leaflet cleft treated by transcatheter edge-to-edge mitral valve repair,in order to provide a model for similar cases.
4.Development History and Frontier Research Progress of Pharmacokinetics of Traditional Chinese Medicine
Li-Jun ZHU ; Zhuo-Ru HE ; Cai-Yan WANG ; Dan-Yi LU ; Jun-Ling YANG ; Wei-Wei JIA ; Chen CHENG ; Yu-Tong WANG ; Liu YANG ; Zhi-Peng CHEN ; Bao-Jian WU ; Rong ZHANG ; Chuan LI ; Zhong-Qiu LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2746-2757
Pharmacokinetics of traditional Chinese medicine(TCM)is a discipline that adopts pharmacokinetic research methods and techniques under the guidance of TCM theories to elucidate the dynamic changes in the absorption,distribution,metabolism and excretion of active ingredients,active sites,single-flavour Chinese medicinal and compounded formulas of TCM in vivo.However,the sources and components of TCM are complex,and the pharmacodynamic substances and mechanisms of action of the majority of TCM are not yet clear,so the pharmacokinetic study of TCM is later than that of chemical medicines,and is far more complex than that of chemical medicines,and its development also confronts with challenges.The pharmacokinetic study of TCM originated in the 1950s and has experienced more than 70 years of development from the initial in vivo study of a single active ingredient,to the pharmacokinetic and pharmacodynamic study of active ingredients,to the pharmacokinetic study of compound and multi-component of Chinese medicine.In recent years,with the help of advanced extraction,separation and analysis technologies,gene-editing animals and cell models,multi-omics technologies,protein purification and structure analysis technologies,and artificial intelligence,etc.,the pharmacokinetics of TCM has been substantially applied in revealing and elucidating the pharmacodynamic substances and mechanisms of action of Chinese medicines,research and development of new drugs of TCM,scientific and technological upgrading of large varieties of Chinese patent medicines,as well as guiding the rational use of medicines in clinics.Pharmacokinetic studies of TCM have made remarkable breakthroughs and significant development in theory,methodology,technology and application.In this paper,the history of the development of pharmacokinetics of TCM and the progress of cutting-edge research was reviewed,with the aim of providing ideas and references for the pharmacokinetics of TCM and related research.
5.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
6.Construction of a Prognostic Model of Multiple Myeloma Based on Metabolism-Related Genes.
Ge-Liang LIU ; Xi-Meng CHEN ; Jun-Dong ZHANG ; Hao-Ran CHEN ; Zi-Ning WANG ; Peng ZHI ; Zhuo-Yang LI ; Pei-Feng HE ; Xue-Chun LU
Journal of Experimental Hematology 2023;31(1):162-169
OBJECTIVE:
To screen the prognostic biomarkers of metabolic genes in patients with multiple myeloma (MM), and construct a prognostic model of metabolic genes.
METHODS:
The histological database related to MM patients was searched. Data from MM patients and healthy controls with complete clinical information were selected for analysis.The second generation sequencing data and clinical information of bone marrow tissue of MM patients and healthy controls were collected from human protein atlas (HPA) and multiple myeloma research foundation (MMRF) databases. The gene set of metabolism-related pathways was extracted from Molecular Signatures Database (MSigDB) by Perl language. The biomarkers related to MM metabolism were screened by difference analysis, univariate Cox risk regression analysis and LASSO regression analysis, and the risk prognostic model and Nomogram were constructed. Risk curve and survival curve were used to verify the grouping effect of the model. Gene set enrichment analysis (GSEA) was used to study the difference of biological pathway enrichment between high risk group and low risk group. Multivariate Cox risk regression analysis was used to verify the independent prognostic ability of risk score.
RESULTS:
A total of 8 mRNAs which were significantly related to the survival and prognosis of MM patients were obtained (P<0.01). As molecular markers, MM patients could be divided into high-risk group and low-risk group. Survival curve and risk curve showed that the overall survival time of patients in the low-risk group was significantly better than that in the high risk group (P<0.001). GSEA results showed that signal pathways related to basic metabolism, cell differentiation and cell cycle were significantly enriched in the high-risk group, while ribosome and N polysaccharide biosynthesis signaling pathway were more enriched in the low-risk group. Multivariate Cox regression analysis showed that the risk score composed of the eight metabolism-related genes could be used as an independent risk factor for the prognosis of MM patients, and receiver operating characteristic curve (ROC) showed that the molecular signatures of metabolism-related genes had the best predictive effect.
CONCLUSION
Metabolism-related pathways play an important role in the pathogenesis and prognosis of patients with MM. The clinical significance of the risk assessment model for patients with MM constructed based on eight metabolism-related core genes needs to be confirmed by further clinical studies.
Humans
;
Cell Cycle
;
Multiple Myeloma/genetics*
;
Prognosis
;
Risk Factors
7.Efficacy and safety of SIMPLE regimen in treatment of extranodal NK/T-cell lymphoma
Miaoling QIU ; Hua YANG ; Huijun LI ; Jing HUANG ; Mei CHEN ; Yun MA ; Xiaojuan AN ; Jinhui HE ; Xiaoling QIU ; Jun WANG ; Jiacai ZHUO ; Zhimei ZHU
Journal of Leukemia & Lymphoma 2023;32(4):210-214
Objective:To investigate the efficacy and safety of SIMPLE regimen in the treatment of extranodal NK/T-cell lymphoma (ENKTCL).Methods:The clinical data of 11 patients with ENKTCL who were admitted to the University of Hong Kong-Shenzhen Hospital from January 2012 to January 2022 were retrospectively analyzed. The patients received 4-6 courses of SIMPLE (cisplatin, gemcitabine, ifosfamide, etoposide, dexamethasone, and pegasparaginase) regimen chemotherapy, and stage Ⅰ and Ⅱ patients who also received local radiotherapy after 2 or 3 courses of chemotherapy. Patients were evaluated for mid-treatment and end-of-treatment outcomes, and the adverse effects of patients were evaluated in each treatment cycle. The Kaplan-Meier method was used to analyze the progression-free survival (PFS) and overall survival (OS) of the 11 patients.Results:All 11 patients were nasal type, with the median age of 41 years old (26-67 years old), including 5 males and 6 females, 3 relapsed cases and 8 newly treated cases. Of the 10 patients evaluated for efficacy, 9 achieved complete remission and 1 achieved at least partial remission (efficacy was assessed based on follow-up). All 11 patients were followed up for a median time of 50 months (15-72 months) and 2 relapsed patients died due to disease progression. The expected 5-year PFS rate and OS rate of 11 patients were both 90.0%, and the expected 5-year OS rate was 100.0% and 66.6% in newly treated and relapsed patients, respectively. Common adverse effects were hematologic adverse reactions, infections, gastrointestinal symptoms, elevated transaminases, and hypofibrinogenemia, all of which were curable. There is no treatment-related death.Conclusions:The SIMPLE regimen for the treatment of ENKTCL has a high remission rate, the patients have long survival time, and the regimen is moderately well tolerated.
8.Genotyping Characteristics of Human Fecal Escherichia coli and Their Association with Multidrug Resistance in Miyun District, Beijing.
Wei Wei ZHANG ; Xiao Lin ZHU ; Le Le DENG ; Ya Jun HAN ; Zhuo Wei LI ; Jin Long WANG ; Yong Liang CHEN ; Ao Lin WANG ; Er Li TIAN ; Bin CHENG ; Lin Hua XU ; Yi Cong CHEN ; Li Li TIAN ; Guang Xue HE
Biomedical and Environmental Sciences 2023;36(5):406-417
OBJECTIVE:
To explore the genotyping characteristics of human fecal Escherichia coli( E. coli) and the relationships between antibiotic resistance genes (ARGs) and multidrug resistance (MDR) of E. coli in Miyun District, Beijing, an area with high incidence of infectious diarrheal cases but no related data.
METHODS:
Over a period of 3 years, 94 E. coli strains were isolated from fecal samples collected from Miyun District Hospital, a surveillance hospital of the National Pathogen Identification Network. The antibiotic susceptibility of the isolates was determined by the broth microdilution method. ARGs, multilocus sequence typing (MLST), and polymorphism trees were analyzed using whole-genome sequencing data (WGS).
RESULTS:
This study revealed that 68.09% of the isolates had MDR, prevalent and distributed in different clades, with a relatively high rate and low pathogenicity. There was no difference in MDR between the diarrheal (49/70) and healthy groups (15/24).
CONCLUSION
We developed a random forest (RF) prediction model of TEM.1 + baeR + mphA + mphB + QnrS1 + AAC.3-IId to identify MDR status, highlighting its potential for early resistance identification. The causes of MDR are likely mobile units transmitting the ARGs. In the future, we will continue to strengthen the monitoring of ARGs and MDR, and increase the number of strains to further verify the accuracy of the MDR markers.
Humans
;
Escherichia coli/genetics*
;
Escherichia coli Infections/epidemiology*
;
Multilocus Sequence Typing
;
Genotype
;
Beijing
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
Diarrhea
;
Microbial Sensitivity Tests
9.Clinical characteristics and prognosis of pediatric relapsed/refractory anaplastic large cell lymphoma.
Li Jun ZHU ; Jia ZHU ; Su Ying LU ; Juan WANG ; Fei Fei SUN ; Jun Ting HUANG ; Yi QUE ; He HUANG ; Hui Qiang HUANG ; Zi jun ZHEN ; Xiao Fei SUN ; Yi Zhuo ZHANG
Chinese Journal of Hematology 2023;44(10):854-856
10. TDZD-8 alleviates oxaliplatin induced neuropathic pain
He-Yu YANG ; Zhuo-Qi CAO ; Mei-Rong XU ; Jun ZHANG ; Ling LIU ; Yu-Jia WANG
Chinese Pharmacological Bulletin 2023;39(4):679-684
Aim To explore the effect of GSK-3β (glycogen synthase kinase-3 beta) inhibitor TDZD-8 on the neuropathic pain induced by side effects of chemotherapeutic drug oxaliplatin and the underlying mechanism. Methods The rat model of oxaliplatin-induced neuropathic pain was established by intraperitoneal injection of oxaliplatin for five consecutive days; the anti-nociception effect was detected by intrathecal injection of TDZD-8. The spontaneous flinches and mechanical pain threshold were used to detect the changes of pain behavior of rats; immunofluorescence and Western blot analysis were used to detect the changes of spinal inflammation and protein levels of rats. Results Intrathecally injection of TDZD-8 significantly alleviated oxaliplatin induced hyperalgesia in rats. TDZD-8 injection obviously inhibited the activation spinal microglia and the inflammatory reaction. TDZD-8 administration significantly inhibited GSK-3β activation. Conclusion TDZD-8 blocks GSK-3β activation, decreases NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome mediated spinal inflammation and alleviates neuropathic pain.

Result Analysis
Print
Save
E-mail